We perform a finite sample analysis of the detection levels for sparse principal components of a high-dimensional covariance matrix. Our minimax optimal test is based on a sparse eigenvalue statistic. Alas, computing this test is known to be NP-complete in general, and we describe a computationally efficient alternative test using convex relaxations. Our relaxation is also proved to detect sparse principal components at near optimal detection levels, and it performs well on simulated datasets. Moreover, using polynomial time reductions from theoretical computer science, we bring significant evidence that our results cannot be improved, thus revealing an inherent trade off between statistical and computational performance.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1127 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
In recent years, sparse principal component analysis has emerged as an extremely popular dimension reduction technique for highdimensional data. The theoretical challenge, in the simplest case, is to estimate the leading eigenvector of a population covariance matrix under the assumption that this eigenvector is sparse. An impressive range of estimators have been proposed; some of these are fast to compute, while others are known to achieve the minimax optimal rate over certain Gaussian or sub-Gaussian classes. In this paper, we show that, under a widely-believed assumption from computational complexity theory, there is a fundamental trade-off between statistical and computational performance in this problem. More precisely, working with new, larger classes satisfying a restricted covariance concentration condition, we show that there is an effective sample size regime in which no randomised polynomial time algorithm can achieve the minimax optimal rate. We also study the theoretical performance of a (polynomial time) variant of the well-known semidefinite relaxation estimator, revealing a subtle interplay between statistical and computational efficiency.Tribute: Peter was a remarkable person: not only a prolific and highly influential researcher, but also someone with a wonderful warmth and generosity of spirit. He was a great inspiration to so many statisticians around the world. We are deeply saddened that he is no longer with us, and dedicate this paper to his memory. Further personal reflections on Peter Hall's life and work from the third author can be found in Samworth (2016).
We consider the problem associated to recovering the block structure of an Ising model given independent observations on the binary hypercube. This new model, called the Ising blockmodel, is a perturbation of the mean eld approximation of the Ising model known as the Curie-Weiss model: the sites are partitioned into two blocks of equal size and the interaction between those of the same block is stronger than across blocks, to account for more order within each block. We study probabilistic, statistical and computational aspects of this model in the high-dimensional case when the number of sites may be much larger than the sample size.
Automatic differentiation (autodiff) has revolutionized machine learning. It allows expressing complex computations by composing elementary ones in creative ways and removes the burden of computing their derivatives by hand. More recently, differentiation of optimization problem solutions has attracted widespread attention with applications such as optimization as a layer, and in bi-level problems such as hyper-parameter optimization and meta-learning. However, the formulas for these derivatives often involve case-by-case tedious mathematical derivations. In this paper, we propose a unified, efficient and modular approach for implicit differentiation of optimization problems. In our approach, the user defines (in Python in the case of our implementation) a function F capturing the optimality conditions of the problem to be differentiated. Once this is done, we leverage autodiff of F and implicit differentiation to automatically differentiate the optimization problem. Our approach thus combines the benefits of implicit differentiation and autodiff. It is efficient as it can be added on top of any state-of-the-art solver and modular as the optimality condition specification is decoupled from the implicit differentiation mechanism. We show that seemingly simple principles allow to recover many recently proposed implicit differentiation methods and create new ones easily. We demonstrate the ease of formulating and solving bi-level optimization problems using our framework. We also showcase an application to the sensitivity analysis of molecular dynamics.
In the context of sparse principal component detection, we bring evidence towards the existence of a statistical price to pay for computational efficiency. We measure the performance of a test by the smallest signal strength that it can detect and we propose a computationally efficient method based on semidefinite programming. We also prove that the statistical performance of this test cannot be strictly improved by any computationally efficient method. Our results can be viewed as complexity theoretic lower bounds conditionally on the assumptions that some instances of the planted clique problem cannot be solved in randomized polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.