These notes survey and explore an emerging method, which we call the low-degree method, for predicting and understanding statistical-versus-computational tradeoffs in high-dimensional inference problems. In short, the method posits that a certain quantity -the second moment of the low-degree likelihood ratio -gives insight into how much computational time is required to solve a given hypothesis testing problem, which can in turn be used to predict the computational hardness of a variety of statistical inference tasks. While this method originated in the study of the sum-of-squares (SoS) hierarchy of convex programs, we present a self-contained introduction that does not require knowledge of SoS. In addition to showing how to carry out predictions using the method, we include a discussion investigating both rigorous and conjectural consequences of these predictions.These notes include some new results, simplified proofs, and refined conjectures. For instance, we point out a formal connection between spectral methods and the low-degree likelihood ratio, and we give a sharp low-degree lower bound against subexponential-time algorithms for tensor PCA.