This paper proposes three strong second order cone programming (SOCP) relaxations for the AC optimal power flow (OPF) problem. These three relaxations are incomparable to each other and two of them are incomparable to the standard SDP relaxation of OPF. Extensive computational experiments show that these relaxations have numerous advantages over existing convex relaxations in the literature: (i) their solution quality is extremely close to that of the SDP relaxations (the best one is within 99.96% of the SDP relaxation on average for all the IEEE test cases) and consistently outperforms previously proposed convex quadratic relaxations of the OPF problem, (ii) the solutions from the strong SOCP relaxations can be directly used as a warm start in a local solver such as IPOPT to obtain a high quality feasible OPF solution, and (iii) in terms of computation times, the strong SOCP relaxations can be solved an order of magnitude faster than standard SDP relaxations. For example, one of the proposed SOCP relaxations together with IPOPT produces a feasible solution for the largest instance in the IEEE test cases (the 3375-bus system) and also certifies that this solution is within 0.13% of global optimality, all this computed within 157.20 seconds on a modest personal computer. Overall, the proposed strong SOCP relaxations provide a practical approach to obtain feasible OPF solutions with extremely good quality within a time framework that is compatible with the real-time operation in the current industry practice
We present a method to construct and analyse 3D models of underwater scenes using a single cost-effective camera on a standard laptop with (a) free or low-cost software, (b) no computer programming ability, and (c) minimal man hours for both filming and analysis. This study focuses on four key structural complexity metrics: point-to-point distances, linear rugosity (R), fractal dimension (D), and vector dispersion (1/k). We present the first assessment of accuracy and precision of structure-from-motion (SfM) 3D models from an uncalibrated GoPro™ camera at a small scale (4 m2) and show that they can provide meaningful, ecologically relevant results. Models had root mean square errors of 1.48 cm in X-Y and 1.35 in Z, and accuracies of 86.8% (R), 99.6% (D at scales 30–60 cm), 93.6% (D at scales 1–5 cm), and 86.9 (1/k). Values of R were compared to in-situ chain-and-tape measurements, while values of D and 1/k were compared with ground truths from 3D printed objects modelled underwater. All metrics varied less than 3% between independently rendered models. We thereby improve and rigorously validate a tool for ecologists to non-invasively quantify coral reef structural complexity with a variety of multi-scale metrics.
It has been recently proven that the semidefinite programming (SDP) relaxation of the optimal power flow problem over radial networks is exact under technical conditions such as not including generation lower bounds or allowing load over-satisfaction. In this paper, we investigate the situation where generation lower bounds are present.We show that even for a two-bus one-generator system, the SDP relaxation can have all possible approximation outcomes, that is (1) SDP relaxation may be exact or (2) SDP relaxation may be inexact or (3) SDP relaxation may be feasible while the OPF instance may be infeasible. We provide a complete characterization of when these three approximation outcomes occur and an analytical expression of the resulting optimality gap for this two-bus system. In order to facilitate further research, we design a library of instances over radial networks in which the SDP relaxation has positive optimality gap.Finally, we propose valid inequalities and variable bound tightening techniques that significantly improve the computational performance of a global optimization solver.Our work demonstrates the need of developing efficient global optimization methods for the solution of OPF even in the simple but fundamental case of radial networks.
In this paper, we examine a mixed integer linear programming (MILP) reformulation for mixed integer bilinear problems where each bilinear term involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to linearize the resulting product of continuous and binary variables. We present the convex hull of the underlying mixed integer linear set. The effectiveness of this reformulation and associated facet-defining inequalities are computationally evaluated on five classes of instances.
Abstract. Recently, Andersen et al. [1] and Borozan and Cornuéjols [3] characterized the minimal inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts derived using maximal lattice-free convex sets. In order to use these minimal inequalities to obtain cuts from two rows of a general simplex tableau, it is necessary to extend the system to include integer variables (giving the two-dimensional mixed integer infinite group problem), and to develop lifting functions giving the coefficients of the integer variables in the corresponding inequalities. In this paper, we analyze the lifting of minimal inequalities derived from lattice-free triangles. Maximal lattice-free triangles in R 2 can be classified into three categories: those with multiple integral points in the relative interior of one of its sides, those with integral vertices and one integral point in the relative interior of each side, and those with non integral vertices and one integral point in the relative interior of each side. We prove that the lifting functions are unique for each of the first two categories such that the resultant inequality is minimal for the mixed integer infinite group problem, and characterize them. We show that the lifting function is not necessarily unique in the third category. For this category we show that a fill-in inequality (Johnson [11]) yields minimal inequalities for mixed integer infinite group problem under certain sufficiency conditions. Finally, we present conditions for the fill-in inequality to be extreme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.