The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults.
(2014), A detailed source model for the M w 9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records, J. Geophys. Res. Solid Earth, 119, 7636-7653, doi:10.1002 amount of diverse data offering a unique opportunity to investigate the details of this major megathrust rupture. Many studies have taken advantage of the very dense Japanese onland strong motion, broadband, and continuous GPS networks in this sense. But resolution tests and the variability in the proposed solutions have highlighted the difficulty to uniquely resolve the slip distribution from these networks, relatively distant from the source region, and with limited azimuthal coverage. In this context, we present a finite fault slip joint inversion including an extended amount of complementary data (teleseismic, strong motion, high-rate GPS, static GPS, seafloor geodesy, and tsunami records) in an attempt to reconcile them into a single better resolved model. The inversion reveals a patchy slip distribution with large slip (up to 64 m) mostly located updip of the hypocenter and near the trench. We observe that most slip is imaged in a region where almost no earthquake was recorded before the main shock and around which intense interplate seismicity is observed afterward. At a smaller scale, the largest slip pattern is imaged just updip of an important normal fault coseismically activated. This normal fault has been shown to be the mark of very low dynamic friction allowing extremely large slip to propagate up to the free surface. The spatial relationship between this normal fault and our slip distribution strengthens its key role in the rupture process of the Tohoku-Oki earthquake.
We implement an algorithm to automatically detect migrations of low frequency earthquakes at time scales between 30 min and 32 h during the 2003, 2004 and 2005 slow slip events in Cascadia. We interpret these migrations of seismicity as a passive manifestation of secondary slip fronts (SSFs) that propagate faster than the main front. We identify the dominant features of 383 SSFs, including time, location, duration, area, propagation velocity and estimate: their moment, stress drop, slip, and slip rate. We apply the same algorithm to continuous tremor detection in Cascadia between 2009 and 2015 and characterize 693 SSFs at time scales between 4 h and 32 h. We identify -to our knowledge for the first time -numerous 10-24 h long SSFs that propagate at velocities intermediate between slow slip events and previously reported SSFs. The systematic detection of SSFs fills a gap between seismically and geodetically detectable slow earthquake processes. Analyses of SSF basic features indicates a wide range of stress drops and slip rates (with me-Email address: qbletery@uoregon.edu (Quentin Bletery) dians of 5.8 kPa and 1.1 mm/h) as well as an intriguing relationship between SSF direction and duration that was observed in other contexts and could potentially help discriminate between the different physical models proposed to explain slow slip phenomena.
Large earthquakes are the product of elastic stress that has accumulated over decades to centuries along segments of active faults. Assuming an elastic crust, one can roughly estimate the location and rate of accumulation of elastic stress. However, this general framework does not account for inelastic, irrecoverable deformation, which results in large-scale topography. We do not know over which part of the earthquake cycle such deformation occurs. Using InSAR and GNSS measurements, we report on a potential correlation between long-term, inelastic vertical rate and short-term, interseismic vertical rate in northern Chile. Approximately 4% to 8% of the geodetically derived interseismic vertical rates translate into permanent deformation, suggesting that topography of the forearc builds up during the interseismic period. This observation provides a quantitative basis for an improved understanding of the interplay between short-term and long-term dynamics along convergent plate boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.