Volcanoes are among the most dynamic geological objects and their eruptions provide a dramatic manifestation of the Earth's internal activity. However, strong eruptions are only short 1
Earthquake in a Maze The 11 April 2012 magnitude 8.6 earthquake offshore of Sumatra was the largest measured earthquake along a strike-slip boundary that modern seismological instruments have ever recorded. Despite its size and proximity to a large population, there was no subsequent tsunami and there were no reported fatalities. Meng et al. (p. 724 , published online 19 July) used teleseismic data from seismological networks in Japan and Europe to image the source of high-frequency radiation generated by the earthquake to understand the mechanics of this unique event. The resultant back projections showed that the earthquake slowly ruptured along a complex series of faults. The deeper-than-usual rupture path and large stress drop are both features that may not be unique to this earthquake, suggesting that regions in a similar tectonic environment may have the potential for more complex—or larger—intraplate earthquakes than might have been expected.
This study lays the groundwork for a new generation of earthquake source models based on a general formalism that rigorously quantifies and incorporates the impact of uncertainties in fault slip inverse problems. We distinguish two sources of uncertainty when considering the discrepancy between data and forward model predictions. The first class of error is induced by imperfect measurements and is often referred to as observational error. The second source of uncertainty is generally neglected and corresponds to the prediction error, that is the uncertainty due to imperfect forward modelling. Yet the prediction error can be shown to scale approximately with the size of earthquakes and thus can dwarf the observational error, particularly for large events. Both sources of uncertainty can be formulated using the misfit covariance matrix, C χ , which combines a covariance matrix for observation errors, C d and a covariance matrix for prediction errors, C p , associated with inaccurate model predictions. We develop a physically based stochastic forward model to treat the model prediction uncertainty and show how C p can be constructed to explicitly account for some of the inaccuracies in the earth model. Based on a first-order perturbation approach, our formalism relates C p to uncertainties on the elastic parameters of different regions (e.g. crust, mantle, etc.). We demonstrate the importance of including C p using a simple example of an infinite strike-slip fault in the quasi-static approximation. In this toy model, we treat only uncertainties in the 1-D depth distribution of the shear modulus. We discuss how this can be extended to general 3-D cases and applied to other parameters (e.g. fault geometry) using our formalism for C p . The improved modelling of C p is expected to lead to more reliable images of the earthquake rupture, that are more resistant to overfitting of data and include more realistic estimates of uncertainty on inferred model parameters.
International audienceWe analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics
International audienceWe use high-resolution Synthetic Aperture Radar- and GPS-derived observations of surfacedisplacements to derive the first probabilistic estimates of fault coupling along the creeping section of theSan Andreas Fault, in between the terminations of the 1857 and 1906 magnitude 7.9 earthquakes. Usinga fully Bayesian approach enables unequaled resolution and allows us to infer a high probability ofsignificant fault locking along the creeping section. The inferred discreet locked asperities are consistentwith evidence for magnitude 6+ earthquakes over the past century in this area and may be associated withthe initiation phase of the 1857 earthquake. As creeping segments may be related to the initiation andtermination of seismic ruptures, such distribution of locked and creeping asperities highlights the centralrole of the creeping section on the occurrence of major earthquakes along the San Andreas Fault
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.