The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling) and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m) which leads to the lower structural natural frequencies, very large operational speed (> 20 knots) and large bow flare (increased slamming loads). The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.
The aim of this paper is to critically assess the methods used for the evaluation of wave-induced loads on ships examining analytical, numerical and experimental approaches. The paper focuses on conventional ocean going vessels and loads originating from steady state and transient excitations, namely slamming, sloshing and green water, for the latter, and including extreme or rogue waves, as well as the more occasional loads following damage. The advantages and disadvantages of the relatively simpler potential flow approaches against the more time consuming CFD methods are discussed with reference to accuracy, modelling nonlinear effects, ease of modelling and of coupling with structural assessment procedures, suitability for long term response prediction and suitability for integration within design and operational decision making. The paper also assesses the uncertainties involved in predicting wave-induced loads and the probabilistic approaches used for the evaluation of long term response and fatigue analysis. The current design practice is reviewed and the role of numerical prediction methods within the classification framework and goal based design approach discussed. Finally the suitability of current developments in prediction methods to meet the needs of the industry and future challenges is assessed.
When the long term behaviour of a floating unit is assessed, the environmental contour concept is often applied together with IFORM (Inverse First Order Reliability Method). This approach avoids direct computation on all sea-states, which is computationally very demanding, and most often simply not feasible. Instead, only a few conditions (the contour) are assessed and results in an accurate estimate of the long term extreme. However, most of available methods to derive the contour require the knowledge of the joint distribution of the different random variables (waves, wind, current...), which is often difficult to derive accurately. In fact, some complex dependences exist and are attempted to be simplified in too few coefficients. Another limitation of current environmental contour is its difficulty to deal with the dependence issue. Indeed, extreme sea-states arise by groups (storms, hurricanes...) and are not independent. While de-clustering techniques exist and are quite straightforward in univariate problems, this becomes difficult when the number of dimension increases. In an attempt to tackle those challenges, this paper presents a novel approach to derive IFORM contours. The method does not require any joint distribution and makes use of much more degrees of freedom to capture the dependence between variables. It also allows for an easy de-clustering. The approach is illustrated on two locations, using actual hindcast data of significant wave height and period; the resulting contours are compared to the ones obtained with more traditional methods.
Many large and ultra large container vessels have entered operation lately and more vessels will enter operation in the coming years. The operational experience is limited and one of the concerns is the additional effect of hull girder vibrations especially from whipping (bow impacts), but also from springing (resonance). Whipping contributes both to increased fatigue and extreme loading, while springing does mainly contribute to increased fatigue loading. MAIB recommended the industry to join forces to investigate the effect of whipping after MSC Napoli, a Post-Panamax container vessel, broke in two in January 2007. This has been followed up by a JIP initiated in 2008 with the following participants: HHI, DNV, BV, CeSOS and Marintek. In 2009 a new design 13000TEU vessel was tested in head seas and reported in [1]. The current paper deals with fatigue and extreme loading of the same vessel, but from realistic quartering sea conditions tested in 2010. Different headings and the effect of wave energy spreading have been investigated and compared to results from head seas. Further, the effect of the vibrations have been investigated on torsion and horizontal bending, as the model is also allowed to vibrate with realistic frequencies in other modes in addition to vertical bending. The findings suggest that changing the course is not effective to reduce the fatigue loading of critical fatigue sensitive details amidships. The effect of wave energy spreading did also not reduce the fatigue loading significantly. For the highest observed vertical bending moments in each sea state and for the three cross sections the wave energy spreading in average reduced the maxima, but for the highest sea state the effect of wave spreading did not consistently give reduced maxima. This is an important aspect when considering the available safety margin that may be reduced by whipping. The whipping gave also a considerable contribution to horizontal bending and torsion. This suggests that validation of numerical tools is urgent with respect to off head sea conditions and that these tools must incorporate the real structural behavior to confirm the importance of the response from torsional and horizontal as well as for vertical vibrations.
FPSO roll prediction has traditionally been performed assuming symmetric roll damping resulting in identical roll responses from portside and starboard waves. Recent interest in the industry to predict asymmetric roll response, either due to asymmetric mooring and riser configurations or damping devices, has led to the development of time domain models utilizing asymmetric Morison drag elements. Here, a frequency domain methodology has been developed to account for asymmetric bilge keels leading to differing port versus starboard wave roll response. A nonlinear bilge keel drag formulation, that includes the effects of radiation velocity, is used, coupled with linearization techniques, to predict the difference in roll RAO from port versus starboard waves. The drag formulation is initially calibrated against FPSO decay tests before the model is validated against measured model test motions. Thus we show that the methodology proposed is capable of predicting the motions from an asymmetric configuration efficiently, such that it can be utilized in design projects requiring FPSO motions analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.