Short-interfering RNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi). RNAi involves multiple RNA-protein interactions characterized by four major steps: assembly of siRNA with the RNA-induced silencing complex (RISC), activation of the RISC, target recognition and target cleavage. These interactions may bias strand selection during siRNA-RISC assembly and activation, and contribute to the overall efficiency of RNAi. To identify siRNA-specific features likely to contribute to efficient processing at each step, we performed a systematic analysis of 180 siRNAs targeting the mRNA of two genes. Eight characteristics associated with siRNA functionality were identified: low G/C content, a bias towards low internal stability at the sense strand 3'-terminus, lack of inverted repeats, and sense strand base preferences (positions 3, 10, 13 and 19). Further analyses revealed that application of an algorithm incorporating all eight criteria significantly improves potent siRNA selection. This highlights the utility of rational design for selecting potent siRNAs and facilitating functional gene knockdown studies.
Glucose homeostasis is controlled by insulin in part through the translocation of intracellular glucose transporter 4 to the plasma membrane in muscle and fat cells. Akt͞protein kinase B downstream of phosphatidylinositol 3-kinase has been implicated in this insulin-signaling pathway, but results with a variety of reagents including Akt1 ؊/؊ and Akt2 ؊/؊ mice have been equivocal. Here we report the application of small interfering RNA-directed gene silencing to deplete both Akt1 and Akt2 in cultured 3T3-L1 adipocytes. Loss of Akt1 alone slightly impaired insulin-mediated hexose transport activity but had no detectable effect on glycogen synthase kinase (GSK)-3 phosphorylation. In contrast, depletion of Akt2 alone by 70% inhibited approximately half of the insulin responsiveness. Combined depletions of Akt1 plus Akt2 in these cells even more markedly attenuated insulin action on glucose transporter 4 movements, hexose transport activity, and GSK-3 phosphorylation. These data demonstrate a primary role of Akt2 in insulin signaling, significant functional redundancy of Akt1 and Akt2 isoforms in this pathway, and an absolute requirement of Akt protein kinases for regulation of glucose transport and GSK-3 in cultured adipocytes.
Effective gene silencing by the RNA interference (RNAi) pathway requires a comprehensive understanding of the elements that influence small interfering RNA (siRNA) functionality and specificity. These include (i) sequence space restrictions that define the boundaries of siRNA targeting, (ii) structural and sequence features required for efficient siRNA performance, (iii) mechanisms that underlie nonspecific gene modulation and (iv) additional features specific to the intended use (i.e., inclusion of native sugar or base chemical modifications for increased stability or specificity, vector design, etc.). Attention to each of these factors enhances siRNA performance and heightens overall confidence in the output of RNAi-mediated functional genomic studies. Here, we provide a detailed protocol explaining the methodologies used for manual and web-based design of siRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.