In this paper, we present a new method to efficiently generate jets in High Energy Physics called PC-JeDi. This method utilises score-based diffusion models in conjunction with transformers which are well suited to the task of generating jets as particle clouds due to their permutation equivariance. PC-JeDi achieves competitive performance with current stateof-the-art methods across several metrics that evaluate the quality of the generated jets. Although slower than other models, due to the large number of forward passes required by diffusion models, it is still substantially faster than traditional detailed simulation. Furthermore, PC-JeDi uses conditional generation to produce jets with a desired mass and transverse momentum for two different particles, top quarks and gluons.
We present Turbo-Sim, a generalised autoencoder framework derived from principles of information theory that can be used as a generative model. By maximising the mutual information between the input and the output of both the encoder and the decoder, we are able to rediscover the loss terms usually found in adversarial autoencoders and generative adversarial networks, as well as various more sophisticated related models. Our generalised framework makes these models mathematically interpretable and allows for a diversity of new ones by setting the weight of each loss term separately. The framework is also independent of the intrinsic architecture of the encoder and the decoder thus leaving a wide choice for the building blocks of the whole network. We apply Turbo-Sim to a collider physics generation problem: the transformation of the properties of several particles from a theory space, right after the collision, to an observation space, right after the detection in an experiment.
Conditional generation is a subclass of generative problems where the output of the generation is conditioned by the attribute information. In this paper, we present a stochastic contrastive conditional generative adversarial network (InfoSCC-GAN) with an explorable latent space. The InfoSCC-GAN architecture is based on an unsupervised contrastive encoder built on the InfoNCE paradigm, an attribute classifier and an EigenGAN generator. We propose a novel training method, based on generator regularization using external or internal attributes every n-th iteration, using a pre-trained contrastive encoder and a pre-trained classifier. The proposed InfoSCC-GAN is derived based on an information-theoretic formulation of mutual information maximization between input data and latent space representation as well as latent space and generated data. Thus, we demonstrate a link between the training objective functions and the above information-theoretic formulation. The experimental results show that InfoSCC-GAN outperforms the "vanilla" Eigen-GAN in the image generation on AFHQ and CelebA datasets. In addition, we investigate the impact of discriminator architectures and loss functions by performing ablation studies. Finally, we demonstrate that thanks to the EigenGAN generator, the proposed framework enjoys a stochastic generation in contrast to vanilla deterministic GANs yet with the independent training of encoder, classifier, and generator in contrast to existing frameworks. Code, experimental results, and demos are available online at github.com/vkinakh/InfoSCC-GAN.
The generation of discontinuous distributions is a difficult task for most known frameworks such as generative autoencoders and generative adversarial networks. Generative non-invertible models are unable to accurately generate such distributions, require long training and often are subject to mode collapse. Variational autoencoders (VAEs), which are based on the idea of keeping the latent space to be Gaussian for the sake of a simple sampling, allow an accurate reconstruction, while they experience significant limitations at generation task. In this work, instead of trying to keep the latent space to be Gaussian, we use a pre-trained contrastive encoder to obtain a clustered latent space. Then, for each cluster, representing a unimodal submanifold, we train a dedicated low complexity network to generate this submanifold from the Gaussian distribution. The proposed framework is based on the information-theoretic formulation of mutual information maximization between the input data and latent space representation. We derive a link between the cost functions and the information-theoretic formulation. We apply our approach to synthetic 2D distributions to demonstrate both reconstruction and generation of discontinuous distributions using continuous stochastic networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.