Pseudomonas species are known to be prolific producers of secondary metabolites that are synthesized wholly or in part by nonribosomal peptide synthetases. In an effort to identify additional nonribosomal peptides produced by these bacteria, a bioinformatics approach was used to "mine" the genome of Pseudomonas syringae pv. tomato DC3000 for the metabolic potential to biosynthesize previously unknown nonribosomal peptides. Herein we describe the identification of a nonribosomal peptide biosynthetic gene cluster that codes for proteins involved in the production of six structurally related linear lipopeptides. Structures for each of these lipopeptides were proposed based on amino acid analysis and mass spectrometry analyses. Mutations in this cluster resulted in the loss of swarming motility of P. syringae pv. tomato DC3000 on medium containing a low percentage of agar. This phenotype is consistent with the loss of the ability to produce a lipopeptide that functions as a biosurfactant. This work gives additional evidence that mining the genomes of microorganisms followed by metabolite and phenotypic analyses leads to the identification of previously unknown secondary metabolites.Nonribosomal peptide synthetase (NRPS) enzymology is involved in the biosynthesis of many natural products with diverse biological activities, such as antifungal, antibacterial, anticancer, immunosuppressant, and metal chelation (reviewed in references 18 and 55). While the chemical structures of the natural products biosynthesized by NRPSs are diverse and explain their wide-ranging biological activities, the core enzymology used to synthesize these molecules is conserved. This conservation comes from NRPSs consisting of a set of repeating core protein domains grouped into enzymatic modules, with each module typically controlling the incorporation of one amino acid precursor into the nonribosomal peptide. The structural diversity of the NRPS-synthesized natural products comes from variations in the number and order of the modules, alterations in the substrate incorporated by the modules, and the potential addition of catalytic domains into modules that result in modifications to the growing peptide chain.The core domains that are repeated for each NRPS module are the adenylation (A) domain, peptidyl carrier protein (PCP) domain, and condensation (C) domain. The A domains are commonly referred to as the "gatekeepers" of a module, because they recognize the substrate that is incorporated into the growing peptide chain. In a significant breakthrough in understanding NRPS enzymology, an amino acid substrate specificity code was identified that enables one to deduce the amino acid that is likely recognized by an A domain, given the protein sequence of the A domain (8,9,35,60). This offers the ability to predict which module incorporates each amino acid of a nonribosomal peptide of known structure, but it also provides a means for proposing what amino acid is recognized by an NRPS module of unknown function. Once it recognizes the amino acid su...
SUMMARY The Bacillus subtilis genome encodes three apparent lipoyl ligase homologues: yhfJ, yqhM, and ywfL which we have renamed lplJ, lipM and lipL, respectively. We show that LplJ encodes the sole lipoyl ligase of this bacterium. Physiological and biochemical characterization of a ΔlipM strain showed that LipM is absolutely required for the endogenous lipoylation of all lipoate-dependent proteins, confirming its role as the B. subtilis octanoyltransferase. However, we also report that in contrast to E. coli, B. subtilis requires a third protein for lipoic acid assembly, LipL. B. subtilis ΔlipL strains are unable to synthesize lipoic acid despite the presence of LipM and the sulfur insertion enzyme, LipA, which should suffice for lipoic acid biosynthesis based on the E. coli model. LipM is only required for the endogenous lipoylation pathway, whereas LipL also plays a role in lipoic acid scavenging. Expression of E. coli lipB allows growth of B. subtilis ΔlipL or ΔlipM strains in the absence of supplements. In contrast, growth of an E. coli ΔlipB strain can be complemented with lipM, but not lipL. These data together with those of the companion paper (Christensen et al., 2011) provide evidence that LipM and LipL catalyze sequential reactions in a novel pathway for lipoic acid biosynthesis.
Summary Signal molecules of the Diffusible Signal Factor (DSF) family have been shown recently to be involved in regulation of pathogenesis and biofilm formation in diverse Gram-negative bacteria. DSF signals are reported to be active not only on their cognate bacteria, but also on unrelated bacteria and the pathogenic yeast, Candida albicans. DSFs are monounsaturated fatty acids of medium chain length containing an unusual cis-2 double bond. Although genetic analyses had identified genes involved in DSF synthesis, the pathway of DSF synthesis was unknown. The DSF of the important human pathogen Burkholderia cenocepacia (called BDSF) is cis-2-dodecenoic acid. We report that BDSF is synthesized from a fatty acid synthetic intermediate, the acyl carrier protein (ACP) thioester of 3-hydroxydodecanoic acid. This intermediate is intercepted by protein Bcam0581 and converted to cis-2-dodecenoyl-ACP. Bcam0581 is annotated as a homologue of crotonase, the first enzyme of the fatty acid degradation pathway. We demonstrated Bcam0581to be a bifunctional protein that not only catalyzed dehydration of 3-hydroxydodecanoyl-ACP to cis-2-dodecenoyl-ACP, but also cleaved the thioester bond to give the free acid. Both activities required the same set of active site residues. Although dehydratase and thioesterase activities are known activities of the crotonase superfamily, Bcam0581 is the first protein shown to have both activities.
Bacillus subtilis lacks a recognizable homologue of the LipB octanoyltransferase, an enzyme essential for lipoic acid synthesis in Escherichia coli. LipB transfers the octanoyl moiety from octanoyl-acyl carrier protein to the lipoyl domains of the 2-oxoacid dehydrogenases via a thioester-linked octanoyl-LipB intermediate. The octanoylated dehydrogenase is then converted to the enzymatically active lipoylated species by insertion of two sulfur atoms into the octanoyl moiety by the S-adenosyl-L-methionine radical enzyme, LipA (lipoate synthase). Bacillus subtilis synthesizes lipoic acid and contains a LipA homologue that is fully functional in E. coli. Therefore, the lack of a LipB homologue presented the puzzle of how B. subtilis synthesizes the LipA substrate. We report that B. subtilis encodes an octanoyltransferase that has virtually no sequence resemblance to E. coli LipB, but instead has a sequence that resembles that of the E. coli lipoate ligase, LplA. Based on this resemblance these genes have generally been annotated as encoding a lipoate ligase, an enzyme that in E. coli scavenges lipoic acid from the environment, but which plays no role in de novo synthesis. We have named the B. subtilis octanoyltransferase LipM and find that, like LipB, the LipM reaction proceeds through a thioester-linked acyl enzyme intermediate. The LipM active site nucleophile was identified as C150 by the finding that this thiol becomes modified when LipM is expressed in E. coli. The level of the octanoyl-LipM intermediate can be significantly decreased by blocking fatty acid synthesis during LipM expression and C150 was confirmed as an essential active site residue by site-directed mutagenesis. LipM homologues seem the sole type of octanoyltransferase present in the Firmicutes and are also present in the Cyanobacteria. LipM type octanoyltransferases represent a new clade of the PF03099 protein family suggesting that octanoyltransfer activity has evolved at least twice within this superfamily.
SUMMARY In the companion paper (Martin et al., 2011) we reported that Bacillus subtilis requires three proteins for lipoic acid metabolism, all of which are members of the lipoate protein ligase family. Two of the proteins, LipM and LplJ, have been shown to be an octanoyltransferase and a lipoate:protein ligase, respectively. The third protein, LipL, is essential for lipoic acid synthesis, but had no detectable octanoyltransferase or ligase activity either in vitro or in vivo. We report that LipM specifically modifies the glycine cleavage system protein, GcvH, and therefore another mechanism must exist for modification of other lipoic acid requiring enzymes (e.g., pyruvate dehydrogenase). We show that this function is provided by LipL which catalyzes the amidotransfer (transamidation) of the octanoyl moiety from octanoyl-GcvH to the E2 subunit of pyruvate dehydrogenase. LipL activity was demonstrated in vitro with purified components and proceeds via a thioester-linked acyl-enzyme intermediate. As predicted, ΔgcvH strains are lipoate auxotrophs. LipL represents a new enzyme activity. It is a GcvH:[lipoyl domain] amidotransferase that probably employs a Cys-Lys catalytic dyad. Although the active site cysteine residues of LipL and LipB are located in different positions within the polypeptide chains, alignment of their structures show these residues occupy similar positions. Thus, these two homologous enzymes have convergent architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.