Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.
The genus Alternaria contains a diversity of saprobic and pathogenic species that can be found in a wide range of environments. Alternaria is currently divided into 26 subgeneric sections, and the "small-spored" Alternaria section Alternaria includes many species that are economically important agricultural pathogens. Recognizing that a stable framework for systematics and species identification is essential for management and regulation purposes, this section has experienced much taxonomic debate and systematic revision in recent years. Molecular phylogenetic studies have challenged the reliability of using morphological characteristics to differentiate Alternaria species but have also suggested that commonly used molecular markers for fungal phylogenetics may not be sufficiently informative at this taxonomic level. To allow the assessment of molecular variation and evolutionary history at a genome-wide scale, we present an overview and analysis of phylogenomic resources for Alternaria section Alternaria. We review the currently available genomic resources and report five newly sequenced genomes. We then perform multiple comparative genomic analyses, including macrosynteny assessment and inference of phylogenetic relationships using a variety of data sets and analysis methods. Fine-scale, genome-wide phylogenetic reconstruction revealed incomplete lineage sorting and the genomic distribution of gene/species tree discordance. Based on these patterns, we propose a list of candidate genes that may be developed into informative markers that are diagnostic for the main lineages. This overview identifies gaps in knowledge and can guide future genome sequencing efforts for this important group of plant pathogenic fungi.
Supporting the identification of unknown strains or specimens by sequencing a genetic marker commonly used for phylogenetics or DNA barcoding is now standard practice for mycologists and plant pathologists. Does one have a new species when a strain differs by a few base pairs when compared to reference sequences from taxonomically well-characterized species that do not differ morphologically from this new strain? If variation at the intra- and interspecific levels for the locus used for identification is already understood for all the closely related species, it is possible to make a reliable prediction of a new species status, but ultimately this question can only be properly addressed by determining the presence or absence of gene flow among a group of strains of the putative new species and strains of previously delimited species. The Phylogenetic Species Concept (PSC) and its assessment using multigene phylogeny and Genealogical Concordance Phylogenetic Species Recognition (GCPSR) are the basis for this chapter. The theoretical framework and a variety of tools to apply these concepts are explained, to assist in the assessment of whether a species is distinct or new when confronted with some sequence divergence from reference data.
Plants play important roles as habitat and food for a tremendous diversity of specialist animals and fungi. The disappearance of any plant species can lead to extinction cascades of its associated biota. In consequence, documenting the diversity and specificity of plant-associated organisms is of high practical relevance in biodiversity conservation. Here, we present the first large-scale molecular investigation into the diversity, host specificity, and cophylogenetic congruence of an especially rich plant-fungal association, the rust fungi (Pucciniaceae) of Cyperaceae and Juncaceae. Using the largest rust fungi DNA barcoding dataset published to date (252 sequences, 82 taxa), we reject the presence of a global ITS2-28S barcode gap, but find a local gap in Cyperaceae-Juncaceae rusts, and suggest the existence of many cryptic species in North America, with some broadly circumscribed species possibly corresponding to >10 cryptic species. We test previous hypotheses of correlations between the phylogenies of rust fungi and their Cyperaceae-Juncaceae hosts using a combination of global-fit and event-based cophylogenetic methods. A significant cophylogenetic signal is detected between rusts and their hosts, but the small number of cospeciations argues for preferential host jumps as the driving process behind these correlations. In addition, temporal congruence between the origin of major Carex clades and their rusts suggests that host diversification may have promoted parasite diversification. Finally, we discuss the relevance of rust infection patterns to the systematics of Cyperaceae, highlight some taxonomic problems uncovered by the analyses, and call attention to the promise of DNA barcoding for bridging knowledge gaps in poorly studied plant-associated microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.