Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Chemoresistance has long been the bottleneck of ovarian cancer (OC) prognosis. It has been shown that mitochondria play a crucial role in cell response to chemotherapy and that dysregulated mitochondrial dynamics is intricately linked with diseases like OC, but the underlying mechanisms remain equivocal. Here, we demonstrate a new mechanism where CRL4CUL4A/DDB1 manipulates OC cell chemoresistance by regulating mitochondrial dynamics and mitophagy. CRL4CUL4A/DDB1 depletion enhanced mitochondrial fission by upregulating AMPKαThr172 and MFFSer172/Ser146 phosphorylation, which in turn recruited DRP1 to mitochondria. CRL4CUL4A/DDB1 loss stimulated mitophagy through the Parkin-PINK1 pathway to degrade the dysfunctional and fragmented mitochondria. Importantly, CRL4CUL4A/DDB1 loss inhibited OC cell proliferation, whereas inhibiting autophagy partially reversed this disruption. Our findings provide novel insight into the multifaceted function of the CRL4 E3 ubiquitin ligase complex in regulating mitochondrial fission, mitophagy, and OC chemoresistance. Disruption of CRL4CUL4A/DDB1 and mitophagy may be a promising therapeutic strategy to overcome chemoresistance in OC.
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
BackgroundKinesin superfamily of proteins (KIFs) has been broadly reported to play an indispensable role in the biological process. Recently, emerging evidence reveals its oncogenic role in various cancers. However, the prognostic, oncological, and immunological values of KIFs have not been comprehensively explored in pancreatic ductal adenocarcinoma (PDAC) patients. We aimed to illustrate the relationship between KIFs and pancreatic ductal adenocarcinoma by using bioinformatical analysis.MethodsWe use GEPIA, Oncomine datasets, cBioPortal, LOGpc, TIMER, and STRING bioinformatics tools and web servers to investigate the aberrant expression, prognostic values, and oncogenic role of KIFs. The two-gene prognostic model and the correlation between KIFs and KRAS and TP53 mutation were performed using an R-based computational framework.ResultsOur results demonstrated that KIFC1/2C/4A/11/14/15/18A/18B/20B/23 (we name it prognosis-related KIFs) were upregulated and associated with unfavorable clinical outcome in pancreatic cancer patients. KIF21B overexpression is associated with better clinical outcome. The KIFC1/2C/4A/11/14/15/18A/18B/20B/23 profiles were significantly increased compared to grade 1 and grade 2/3. Besides, KIFC1/2C/4A/11/14/15/18A/18B/20B/23 was significantly associated with the mutation status of KRAS and TP53.Notably, most prognosis-related KIFs have strong correlations with tumor growth and myeloid-derived suppressor cells infiltration (MDSCs). A prognostic signature based on KIF20B and KIF21B showed a reliable predictive performance. Receiver operating characteristic (ROC) curve was employed to assess the predictive power of two-gene signature. Consequently, the gene set enrichment analysis (GSEA) showed that KIF20B and KIF21B’s overexpression was associated with the immunological and oncogenic pathway activation in pancreatic cancer. Finally, real-time quantitative PCR (RT-qPCR) was utilized to investigate the expression pattern of KIF20B and KIF21B in pancreatic cancer cell lines and normal pancreatic cell.ConclusionsKnowledge of the expression level of the KIFs may provide novel therapeutic molecular targets and potential prognostic biomarkers to pancreatic cancer patients.
Background Members of the nuclear receptor‐binding SET domain (NSD) family of histone H3 lysine 36 methyltransferases comprise NSD1, NSD2 (MMSET/WHSC1), and NSD3 (Wolf–Hirschhorn syndrome candidate 1‐like 1, WHSC1L1). While the expression of NSD genes is essential to normal biological processes and cancer, knowledge of their expression levels to prognosticate in cancer remains unclear. Methods We analyzed the expression patterns for NSD family genes across multiple cancer types and examined their association with clinical features and patient survival profiles. Next, we explored the association between NSD3 expression and described features of the tumor microenvironment (TME) in PAAD, a severe type of pancreatic cancer. In particular, we correlated promoter methylation levels for NSD3 with patient outcomes in PAAD. Finally, we explored the putative oncogenic roles for NSD3 using a series of experiments with pancreatic cancer cells. Results We report that the expression of NSD family members is correlated with clinical prognosis across multiple types of cancers. Also, we demonstrate that NSD3 variants are most prevalent among NSD genes across cancers we analyzed. Notably, when compared with NSD1 and NSD2, we find that NSD3 is prominently expressed, and its expression is significantly linked with clinical outcome in pancreatic cancer. Furthermore, NSD3 is frequently amplified, exhibits low promoter methylation, and is correlated with immune cell infiltration and enhanced proliferation of pancreatic cancer. Finally, we demonstrate that knockdown of NSD3 alters H3K36me2 methylation, downstream gene expression and EGFR/ERK signaling in pancreatic cancer cells. Conclusions We find that expression levels, the presence of genetic variants of NSD family genes, as well as their promoter methylation are correlated with clinical outcomes in cancer, including pancreatic cancer. Our in vitro experiments suggest that NSD3 may be relevant to gene expression regulation and growth factor signaling in pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.