Understanding intercity mobility patterns is important for future urban planning, in which the intensity of intercity mobility indicates the degree of urban integration development. This study investigates the intercity mobility patterns of the Greater Bay Area (GBA) in China. The proposed workflow starts by analyzing intercity mobility characteristics, proceeds to model the spatial-temporal heterogeneity of intercity mobility structures, and then identifies the intercity mobility patterns. We first conduct a complex network analysis, based on weighted degrees and the PageRank algorithm, to measure intercity mobility characteristics. Next, we calculate the Normalized Levenshtein Distance for Population Mobility Structure (NLPMS) to quantify the differences in intercity mobility structures, and we use the Non-negative Matrix Factorization (NMF) to identify intercity mobility patterns. Our results showed an evident ‘Core-Periphery’ differentiation characterized by intercity mobility, with Guangzhou and Shenzhen as the two core cities. An obvious daily intercity commuting pattern was found between Guangzhou and Foshan, and between Shenzhen and Dongguan cities at working time. This pattern, however, changes during the holidays. This is because people move from the core cities to peripheral cities at the beginning of holidays and return at the end of holidays. This study concludes that Guangzhou and Foshan have formed a relatively stable intercity mobility pattern, and the Shenzhen–Dongguan–Huizhou metropolitan area has been gradually formed.
Atmospheric pollution is a critical issue in public health systems. The simulation of atmospheric pollution dispersion in urban blocks, using CFD, faces several challenges, including the complexity and inefficiency of existing CFD software, time-consuming construction of CFD urban block geometry, and limited visualization and analysis capabilities of simulation outputs. To address these challenges, we have developed a prototype system that couples 3DGIS and CFD for simulating, visualizing, and analyzing atmospheric pollution dispersion. Specifically, a parallel algorithm for coordinate transformation was designed, and the relevant commands were encapsulated to automate the construction of geometry and meshing required for CFD simulations of urban blocks. Additionally, the Fluent-based command flow was parameterized and encapsulated, enabling the automatic generation of model calculation command flow files to simulate atmospheric pollution dispersion. Moreover, multi-angle spatial partitioning and spatiotemporal multidimensional visualization analysis were introduced to achieve an intuitive expression and analysis of CFD simulation results. The result shows that the constructed geometry is correct, and the mesh quality meets requirements with all values above 0.45. CPU and GPU parallel algorithms are 13.3× and 25× faster than serial. Furthermore, our case study demonstrates the developed system’s effectiveness in simulating, visualizing, and analyzing atmospheric pollution dispersion in urban blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.