In this study, we investigated the frictional behavior of both hydrogenated and hydrogen-free diamondlike carbon (DLC) films in high vacuum (10 -6 Pa) at room temperature. Water was also introduced into the vacuum chamber to elucidate its effects on DLC film tribology. The hydrogen-free DLC (also referred to as tetrahedral amorphous carbon, or ta-C) was produced by an arc-PVD process, and the highly hydrogenated DLC was produced by plasma-enhanced chemical-vapor deposition.Tribological measurements of these films were made with a pin-on-disc machine with coated steel balls and coated steel discs in matched pairs under a 1 N load. The ball/disk pairs were rotated at sliding speeds in the range of 0.025-0.075 m/s. In vacuum, the steady-state friction coefficient of ta-C was of the order of 0.6 and the wear was severe, whereas for the highly hydrogenated film, friction was below 0.01, and in an optical microscope no wear could be detected. Adding water vapor to the sliding ta-C system in a vacuum chamber caused friction to decrease monotonically from 0.6 to ≈0.05. In contrast, adding water vapor to the sliding DLC system caused the friction to increase linearly with pressure from 0.01 to 0.07. The results illustrate the importance of taking into account environmental conditions, especially the presence of water, when DLC films are being considered for a given application.
Electrochemical quartz crystal microbalance coupled with dissipation (EQCM-D) is employed to investigate the solid electrolyte interphase (SEI) formation and Li insertion/deinsertion into thin film electrodes of tin. Based on the frequency change we find that the initial SEI formation process is rapid before Li insertion but varies significantly with increasing concentration of the additive fluoroethylene carbonate (FEC) in the electrolyte. The extent of dissipation, which represents the film rigidity, increases with cycle number, reflecting film thickening and softening. Dissipation values are almost twice as large in the baseline electrolyte (1.2 M LiPF6 in 3:7 wt % ethylene carbonate:ethyl methyl carbonate), indicating the film in baseline electrolyte is roughly twice as soft as in the FEC-containing cells. More importantly, we detail how quantitative data about mass, thickness, shear elastic modulus, and shear viscosity in a time-resolved manner can be obtained from the EQCM-D response. These parameters were extracted from the frequency and dissipation results at multiple harmonics using the Sauerbrey and Voigt viscoelastic models. From these modeled results we show the dynamic mass changes for each half cycle. We also demonstrate that different amounts of FEC additive influence the SEI formation behavior and result in differences in the estimated mass, shear modulus and viscosity. After three cycles, the film in baseline electrolyte exhibits a 1.2 times larger mass change compared with the film in the FEC-containing electrolyte. The shear elastic modulus of films formed in the presence of FEC is larger than in the baseline electrolyte at early stages of lithiation. Also with lithiation is a marked increase in film viscosity, which together point to a much stiffer and more homogeneous SEI formed in the presence of FEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.