JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.Wiley, British Ecological Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of Ecology This content downloaded from 128.252.67.66 on Tue,
Habitat suitability models have been used for decades to develop spatially explicit predictions of landscape capacity to support populations of target species. As high-resolution remote sensing data are increasingly included in habitat suitability models that inform spatial conservation and restoration decisions, it is essential to validate model predictions with independent, quantitative data collected over sustained time frames. Here, we used data collected from 12 reefs over a 14 yr sampling period to validate a recently developed physical habitat suitability model for intertidal oyster reefs in coastal Virginia, USA. The model used intertidal elevation, water residence time, and fetch to predict the likelihood of suitable conditions for eastern oysters Crassostrea virginica across a coastal landscape, and remotely sensed elevation was the most restrictive parameter in the model. Model validation revealed that adult oyster biomass was on average 1.5 times greater on oyster reefs located in predicted ‘suitable’ habitat relative to reefs located in predicted ‘less suitable’ habitat over the 14 yr sampling period. By validating this model with long-term population data, we highlight the importance of elevation as a driver of sustained intertidal oyster success. These findings extend the validation of habitat suitability models by quantitatively supporting the inclusion of remotely sensed data in habitat suitability models for intertidal species. Our results suggest that future oyster restoration and aquaculture projects could enhance oyster biomass by using habitat suitability models to select optimal site locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.