The avirulence genes Avr9 and Avr4 from the fungal tomato pathogen Cladosporium fulvum encode extracellular proteins that elicit a hypersensitive response when injected into leaves of tomato plants carrying the matching resistance genes, Cf-9 and Cf-4, respectively. We successfully expressed both Avr9 and Avr4 genes in tobacco with the Agrobacterium tumefaciens transient transformation assay (agroinfiltration). In addition, we expressed the matching resistance genes, Cf-9 and Cf-4, through agroinfiltration. By combining transient Cf gene expression with either transgenic plants expressing one of the gene partners, Potato virus X (PVX)-mediated Avr gene expression, or elicitor injections, we demonstrated that agroinfiltration is a reliable and versatile tool to study Avr/Cf-mediated recognition. Significantly, agroinfiltration can be used to quantify and compare Avr/Cf-induced responses. Comparison of different Avr/Cf-interactions within one tobacco leaf showed that Avr9/Cf-9-induced necrosis developed slower than necrosis induced by Avr4/Cf-4. Quantitative analysis demonstrated that this temporal difference was due to a difference in Avr gene activities. Transient expression of matching Avr/Cf gene pairs in a number of plant families indicated that the signal transduction pathway required for Avr/Cf-induced responses is conserved within solanaceous species. Most non-solanaceous species did not develop specific Avr/Cf-induced responses. However, co-expression of the Avr4/Cf-4 gene pair in lettuce resulted in necrosis, providing the first proof that a resistance (R) gene can function in a different plant family.
SummaryTo induce post.transcriptional silencing of flower pigmentation genes by homologous sense transgenes in transgenic petunias, it is not necessary for the transgenes to be highly transcribed. Even promoterless transgenes can induce silencing. Here it is shown that in these cases silencing is mediated by multimeric transgene/T-DNA loci in which the T-DNAs are arranged as inverted repeats (IRs). With the transgene constructs used, monomeric T-DNA loci are unable to confer silencing even though they modulate IR-induced silencing. IRs with the silencing sequences proximal to the centre (IR c) induce a more severe silencing than IRs with these sequences distal to the centre (IR,). Somatic reversion of silencing, as observed in a side branch of one of the chalcone synthase (Chs) transformants, was associated with a deletion of the IR locus from L1 cells, the meristematic cell layer that expresses the endogenous Chs genes in the flower corolla. Taken together, these data indicate that the post-transcriptional silencing mechanism can be activated by inverted transgene repeats. It is also shown that a silent IR UidA-ChsA locus silences the expression of a monomeric 35S promoter-driven UidA-ChsA transgene only in corollas where the endogenous Chs genes are highly transcribed. These results are consistent with a model in which an IR, by virtue of its palindromic sequence organization, is able to promote the production of aberrant RNAs from the endogenous homologs as a result of ectopic pairing.
The tomato resistance genes Cf-4 and Cf-9 confer specific, hypersensitive response-associated recognition of Cladosporium carrying the avirulence genes Avr4 and Avr9 , respectively. Cf-4 and Cf-9 encode type I transmembrane proteins with extracellular leucine-rich repeats (LRRs). Compared with Cf-9, Cf-4 lacks two LRRs and differs in 78 amino acid residues. To investigate the relevance of these differences for specificity, we exchanged domains between Cf-4 and Cf-9, and mutant constructs were tested for mediating the hypersensitive response by transient coexpression with either Avr4 or Avr9 . We show that the number of LRRs is essential for both Cf-4 and Cf-9 function. In addition, Cf-9 specificity resides entirely in the LRR domain and appears to be distributed over several distant LRRs. In contrast, Cf-4 specificity determinants reside in the N-terminal LRR-flanking domain and three amino acid residues in LRRs 13, 14, and 16. These residues are present at putative solvent-exposed positions, and all are required for full Cf-4 function. Finally, we show that Cf-9 carrying the specificity determinants of Cf-4 has recognitional specificity for AVR4. The data indicate that diversifying selection of solvent-exposed residues has been a more important factor in the generation of Cf-4 specificity than has sequence exchange between Cf-4 progenitor genes. The fact that most variant residues in Cf-4 are not essential for Cf-4 specificity indicates that the diverse decoration of R proteins is not fully adapted to confer recognition of a certain avirulence determinant but likely provides a basis for a versatile, adaptive recognition system. INTRODUCTIONBecause plants are subjected to environments that change continuously, they are armed with recognition systems that can sense diverse biotic and abiotic stresses and subsequently mediate the induction of appropriate responses. A recognition system that can deal with various pathogens is especially crucial for the survival of the plant. Specific recognition of invading pathogens frequently is mediated by resistance ( R ) genes. Upon recognition of the matching pathogen-derived avirulence determinant (AVR), various defense responses are triggered, often including a hypersensitive response. The hypersensitive response involves the death of the tissue surrounding the primary infection site and thereby restricts further growth of the invading pathogen (Hammond-Kosack and Jones, 1996). Surprisingly, R genes that confer resistance to different types of pathogens encode very similar proteins, indicating that in plants, flexible recognition systems are used to monitor attacks by a diverse array of pathogens. The largest class of R genes encodes proteins that are likely located in the cytoplasm and contain leucine-rich repeats (LRRs) and a nucleotide binding site (NBS). Members of this NBS-LRR class have been cloned from various plant species and confer race-specific resistance against viruses, bacteria, fungi, oomycetes, nematodes, or insects (reviewed in Van der Biezen and Jones, 199...
The gene-for-gene model postulates that for every gene determining resistance in the host plant, there is a corresponding gene conditioning avirulence in the pathogen. On the basis of this relationship, products of resistance (R) genes and matching avirulence (Avr) genes are predicted to interact. Here, we report on binding studies between the R gene product Cf-9 of tomato and the Avr gene product AVR9 of the pathogenic fungus Cladosporium fulvum. Because a high-affinity binding site (HABS) for AVR9 is present in tomato lines, with or without the Cf-9 resistance gene, as well as in other solanaceous plants, the Cf-9 protein was produced in COS and insect cells in order to perform binding studies in the absence of the HABS. Binding studies with radio-labeled AVR9 were performed with Cf-9-producing COS and insect cells and with membrane preparations of such cells. Furthermore, the Cf-9 gene was introduced in tobacco, which is known to be able to produce a functional Cf-9 protein. Binding of AVR9 to Cf-9 protein produced in tobacco was studied employing surface plasmon resonance and surface-enhanced laser desorption and ionization. Specific binding between Cf-9 and AVR9 was not detected with any of the procedures. The implications of this observation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.