BackgroundIn the human large bowel, sacral parasympathetic nerves arise from S2 to S4, project to the pelvic plexus (“hypogastric plexus”) and have post-ganglionic axons entering the large bowel near the rectosigmoid junction. They then run long distances orally or aborally within the bowel wall forming “ascending nerves” or “shunt fascicles” running in the plane of the myenteric plexus. They form bundles of nerve fibres that can be distinguished from the myenteric plexus by their straight orientation, tendency not to merge with myenteric ganglia and greater width.AimTo identify reliable marker(s) to distinguish these bundles of ascending nerves from other extrinsic and intrinsic nerves in human colon.MethodsHuman colonic segments were obtained with informed consent, from adult patients undergoing elective surgery (n = 21). Multi-layer immunohistochemical labelling with neurofilament-H (NF200), myelin basic protein (MBP), von Willebrand factor (vWF), and glucose transporter 1 (GLUT1), and rapid anterograde tracing with biotinamide, were used to compare ascending nerves and lumbar colonic nerves.ResultsThe rectosigmoid and rectal specimens had 6–11 ascending nerves spaced around their circumference. Distal colon specimens typically had 1–3 ascending nerves, with one located near the mesenteric taenia coli. No ascending nerves were observed in ascending colon specimens. GLUT1 antisera labelled both sympathetic lumbar colonic nerves and ascending nerves in the gut wall. Lumbar colonic nerves joined the myenteric plexus and quickly lost GLUT1 labelling, whereas GLUT1 staining labelled parasympathetic ascending nerves over many centimetres.ConclusionAscending nerves can be distinguished in the colorectum of humans using GLUT1 labelling combined with NF200.
A class of Group III muscle afferent neurons has branching sensory terminals in the connective tissue between layers of mouse abdominal muscles ("CT3 muscle afferents"). These sensory endings are both mechanosensitive and metabosensitive. In the present study, responses of CT3 afferents to lactate ions and changes in temperature were recorded. Raising muscle temperature from 32.7 • C to 37 • C had no consistent effects on CT3 afferent basal firing rate or responses to either von Frey hair stimulation or to an applied load. Superfusion with lactate ions (15 mM, pH 7.4) was associated with an increase in firing from 6 ± 0.7 Hz to 11.7 ± 6.7 Hz (14 units, n = 13, P < 0.05, P = 0.0484) but with considerable variability in the nature and latency of response. Reducing the concentration of extracellular divalent cations, which mimicked the chelating effects of lactate, did not increase firing. Raised concentrations of divalent cations (to compensate for chelation) did not block excitatory effects of lactate on CT3 afferents, suggesting that effects via ASIC3 were not involved. Messenger RNA for the G-protein coupled receptor, hydroxyl carboxylic acid receptor 1 (HCAR1) was detected in dorsal root ganglia and HCAR1-like immunoreactivity was present in spinal afferent nerve cell bodies retrogradely labeled from mouse abdominal muscles. HCAR1-like immunoreactivity was also present in axons in mouse abdominal muscles. This raises the possibility that some effects of lactate on group III muscle afferents may be mediated by HCAR1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.