The objective of this study was to evaluate the effect of lactoferrin addition to milk replacer varying in crude protein (CP) on dry matter intake, growth, and days medicated. Thirty-four Holstein heifer calves were assigned to 4 treatments in a 2 x 2 factorial arrangement of treatments in a randomized complete block design. Treatments were as follows: 562 g daily of a nonmedicated conventional milk replacer (20% CP:20% fat) feeding regimen with or without 1 g of supplemental bovine lactoferrin (n = 9 for both treatments) or a nonmedicated intensified milk replacer feeding regimen (28% CP:20% fat) fed on a metabolizable energy basis (0.2 Mcal/kg BW(0.75)) from d 2 to 9, and at 0.27 Mcal/kg BW(0.75) from d 10 to 42 with or without 1g supplemental bovine lactoferrin (n = 8 for both treatments). Calves were fed pelleted starter (25% CP) in 227.5-g increments beginning on d 2 and had free access to water. Calves remained on the study for 14 d postweaning. Dry matter intake was determined daily. Growth measurements were taken weekly. Blood samples were taken twice weekly for determination of blood urea N. On d 10 of life, calves were subjected to a xylose challenge. Calves on conventional treatments ate more starter preweaning, during weaning, and postweaning. Preweaning, intensively fed calves had higher dry matter intakes. Weights of intensified-fed calves were greater at weaning. Intensified milk replacer-fed calves had greater average daily gain preweaning and overall and higher gain:feed ratios preweaning, but conventionally fed calves had higher gain:feed ratios during weaning. Intensified milk replacer-fed calves had greater hip heights during weaning and postweaning and greater heart girths preweaning, weaning, and postweaning. Days medicated were greater preweaning and overall for intensified-fed calves. There were no differences among treatments for xylose absorption. Calves on conventional treatments had increased blood urea nitrogen concentrations preweaning. There were no effects of lactoferrin on any experimental variable. Intensified milk replacer-fed calves consumed less starter but had higher average daily gains overall and larger frames and greater BW than conventionally fed calves. An intensified milk replacer feeding regimen promotes faster growth during the preweaning period when compared with calves fed conventional treatments, but supplemental bovine lactoferrin was not beneficial under these experimental conditions.
Feed is generally the greatest expense for milk production. With volatility in feed and milk markets, income over feed cost (IOFC) is a more advantageous measure of profit than simply feed cost per cow. The objective of this study was to evaluate the effects of ration cost and ingredient composition on IOFC and milk yield. The Pennsylvania State Extension Dairy Team IOFC tool (http://extension.psu.edu/animals/dairy/business-management/financial-tools/income-over-feed-cost/introduction-to-iofc) was used to collect data from 95 Pennsylvania lactating dairy cow herds from 2009 to 2012 and to determine the IOFC per cow per day. The data collected included average milk yield, milk income, purchased feed cost, ration ingredients, ingredient cost per ton, and amount of each ingredient fed. Feed costs for home-raised feeds for each ration were based on market values rather than on-farm cost. Actual costs were used for purchased feed for each ration. Mean lactating herd size was 170 ± 10.5 and daily milk yield per cow was 31.7 ± 0.19 kg. The mean IOFC was $7.71 ± $1.01 cost per cow, ranging from -$0.33 in March 2009 to $16.60 in September 2011. Data were analyzed using a one-way ANOVA in SPSS (IBM Corp., Armonk, NY). Values were grouped by quartiles and analyzed with all years combined as well as by individual year. Purchased feed cost per cow per day averaged $3.16 ± $1.07 for 2009 to 2012. For 2009 to 2012 combined, milk yield and IOFC did not differ with purchased feed cost. Intermediate levels (quartiles 2 and 3) of forage cost per cow per day between $1.45 and $1.97 per cow per day resulted in the greatest average IOFC of $8.19 and the greatest average milk yield of 32.3 kg. Total feed costs in the fourth quartile ($6.27 or more per cow per day) resulted in the highest IOFC. Thus, minimizing feed cost per cow per day did not maximize IOFC. In 2010, the IOFC was highest at $8.09 for dairies that fed 1 or more commodity by-products. Results of the study indicated that intermediate levels of forage cost and higher levels of total feed cost per cow per day resulted in both higher milk yield and higher IOFC. This suggests that optimal ration formulation rather than least cost strategies may be key to increasing milk yield and IOFC, and that profit margin may be affected more by quality of the feed rather than the cost.
The effect of additional dietary potassium in early lactation dairy cows was evaluated with the addition of potassium carbonate sesquihydrate, which increased dietary K from 1.3 to 2.1% of dry matter (DM) from wk 3 to 12 of lactation. Cows fed potassium carbonate sesquihydrate in the form of DCAD Plus (Church & Dwight Co. Inc., Princeton, NJ) had increased DM intake, milk fat percentage and yield, energy-corrected milk, and efficiency of milk production per unit of DM intake. Milk fat of cows fed higher dietary K had a lower concentration of trans fatty acids, suggesting a role for potassium carbonate sesquihydrate in the rumen in the biohydrogenation processes converting linoleic to stearic acid. Cows fed the diet with 2.1% K had greater apparent balance of K, and no effects were noted on the concentration of blood Mg or amount of fecal Mg. The data support the feeding of greater amounts of K in the early lactation cow.
Nutrient management on dairy operations has become more complex as society demands more attention be placed on environmental stewardship. Although nutrient management has traditionally focused on an individual field basis, there is a need for dairy operations to focus on nutrients at a whole-farm level. The emphasis of contemporary integrated nutrient management should be placed on three areas: reducing imports, enhancing within farm efficiencies (both cropping and cow efficiencies), and seeking export opportunities for excess nutrients not utilized for crop production on the farm. Focusing on the flows of nutrients to, within, and off a farm assists with the development of management strategies of how to best handle nutrients in an environmentally friendly manner. Proper management of nutrients at the whole-farm level needs to be accompanied by an effort to inform the public and environmentally concerned groups about the proactive efforts that producers have adopted to manage nutrients and protect the environment. To be sustainable, integrated nutrient management will require an expanded effort to reconnect the nutrient cycle and link the movement of nutrients between sites of feed production and feed utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.