This in vitro study investigated the influence of using different combinations of bracket, adhesive, and light-curing source on the tensile bond strength to porcelain and on failure patterns at debonding. Tensile tests were performed using: one ceramic bracket versus one metal bracket, two orthodontic composites; type bisphenol A-glycidyldimethacrylate and urethane dimethacrylate (UDMA), and four light-curing units with the same range of emission spectrum but various light intensities: three light-emitting diode (LED) units and one halogen-based unit. One hundred and sixty porcelain samples were randomly divided into 16 equal groups. The porcelain surface was conditioned with 9 per cent hydrofluoric acid before silane application. The composite was photo-polymerized for 40 seconds. After storage in water at 37°C for 24 hours, the samples were subjected to tensile force until bond failure. Bond strength and bond failure mode were recorded; results were analysed (α = 0.05) using R language; linear model with constant variance for the bond strength and multinomial distribution for the failure mode. The bond strength in all groups was sufficient to withstand orthodontic treatment (>6 MPa). There was no statistical difference between the adhesives, but comparing bracket × light interaction, it was significantly higher with the ceramic bracket. No significant differences were seen between the metal bracket groups, but for the ceramic bracket, the results were significantly higher with the LED light. No fracture was observed in porcelain with the metal bracket but it occurred in 35 per cent of the ceramic bracket samples and the risk was higher when using UDMA composite and lower with LED high intensity light.
Anchorage devices are increasingly used in orthodontics, and their clinical performance is directly dependent on the tissue response to these devices. This study aims to identify assessment parameters for evaluating tissue reactions around orthodontically loaded implants and to propose parameters to be included in a standardized method. Several electronic databases (PubMed, ScienceDirect, the Cochrane database) were explored for papers from January 1999 to December 2009. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement was used as a guideline for the methodology of systematic reviews. Twenty-five publications were selected from 123 potentially relevant abstracts. The selected studies mainly aimed to answer a clinical question and particularly the ability of immediate loading in orthodontics. Very few studies aimed to understand the healing mechanism around the devices leading to a lack of information on this topic. The most frequent combination of assessment methods was clinical evaluation, histology/histomorphometry and intravital bone labeling. Although the dog model is mainly used, pigs represent an interesting animal model, especially when studying devices in growing bone. Despite the extensive use of miniscrews in growing individuals, only few studies have included young subjects in their protocol. Moreover, in such studies, an oral hygiene program is absolutely necessary to avoid complications. Finite element analysis could improve the knowledge of the relationship between design and bone reaction; unfortunately, this elaborated method is complex and impossible to perform routinely. For standardization, the authors recommend to include specific criteria in study protocols when assessing tissue response to orthodontically loaded devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.