Nano-patterns made of poly(methyl methacrylate) (PMMA) were fabricated on silicon wafer using a capillarity-directed soft lithographic technique. Patterns with three different aspect ratios were investigated for their adhesion and friction properties at nano-scale and for friction at micro-scale. The patterned samples exhibited superior tribological properties, at both these scales when compared to those of flat PMMA thin films.
The 304 Stainless Steel (SS304) is severely affected by salt water corrosion due to its high surface wettability. By reducing its surface wettability, its corrosion can be reduced. To achieve this, topographical modification of the steel surface is an effective route. In this work, SS304 flat surfaces were topographically modified into microgrooves (ridge width 250 μm to 500 μm, groove width 200 μm, width ratio = ridge width/groove width >1). Wire cut electrical discharge machining was used to fabricate the microgrooves. Long-term wetting characteristics and long-term corrosion behaviour of flat surface and microgrooves were studied. The influence of the nature of wetting of the tested surfaces on their corrosion behaviour was examined. The sessile drop method and potentiodynamic polarization tests in sodium chloride (3.5 wt. % NaCl) solution (intermittent and continuous exposures for 168 h) were studied to characterize their wetting and corrosion behaviours, respectively. Topographical modification imparted long-term hydrophobicity and, as a consequence, long-term anticorrosion ability of the steel surface. Micropatterning reduced the corrosion rate by two orders of magnitude due to reduction in interfacial contact area with the corrosive fluid via composite wetting, i.e., solid–liquid–air interface. Microgrooves showed corrosion inhibition efficiency ³88%, upon long-term exposure to NaCl solution. By comparing the wetting and corrosion behaviours of the microgrooves with those of the previously studied microgrooves (ridge width/groove width <1), it was found that the surface roughness of their ridges strongly influences their wetting and corrosion properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.