Annona muricata is a naturally occurring edible plant with wide array of therapeutic potentials. In India, it has a long history of traditional use in treating various ailments. The present investigation was carried out to characterize the phytochemicals present in the methanolic and aqueous leaf extracts of A. muricata, followed by validation of its radical scavenging and DNA protection activities. The extracts were also analyzed for its total phenolic contents and subjected to HPLC analysis to determine its active metabolites. The radical scavenging activities were premeditated by various complementary assays (DRSA, FRAP and HRSA). Further, its DNA protection efficacy against H2O2 induced toxicity was evaluated using pBR322 plasmid DNA. The results revealed that the extracts were highly rich in various phytochemicals including luteolin, homoorientin, tangeretin, quercetin, daidzein, epicatechin gallate, emodin and coumaric acid. Both the extracts showed significant (p< 0.05) radical scavenging activities, while methanolic extract demonstrated improved protection against H2O2-induced DNA damage when compared to aqueous extract. A strong positive correlation was observed for the estimated total phenolic contents and radical scavenging potentials of the extracts. Further HPLC analysis of the phyto-constituents of the extracts provides a sound scientific basis for compound isolation.
Natural products have been the target for cancer therapy for several years but there is still a dearth of information on potent compounds that may protect normal cells and selectively destroy cancerous cells. The present study was aimed to evaluate the cytotoxic potential of n-butanolic leaf extract of Annona muricata L.
Luteolin is a naturally occurring flavonoid present in many plants with diverse applications in pharmacology. Despite several studies elucidating its significant anti-cancer activity against various cancer cells, the mechanism of action in skin cancer is not well addressed. Hence, we investigated the effects of luteolin in HaCaT (human immortalized keratinocytes) and A375 (human melanoma) cells. The radical scavenging abilities of luteolin were determined spectrophotometrically, prior to a cytotoxic study (XTT assay). Inhibitory effects were assessed by colony formation assay.
The objective of this study was to determine antioxidant and cytotoxic efficacies of methanolic and aqueous extracts of Rheum emodi Wall. ex Meissn. rhizome. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities, inhibitory effect on lipid peroxidation and Fe3+ reducing antioxidant property have been used to investigate antioxidant properties of the extracts. Cytotoxicity of the extracts was tested on MDA-MB-435S and Hep3B cell lines. Both extracts displayed extensive cytotoxicity to the tested cell lines. The extracts were studied for their ability to protect pBR322 DNA from damage by UV induced photolysis of H2O2. The aqueous extract, though inferior to methanolic extract in its antioxidant potential exhibited efficiency in DNA protection, while the methanolic extract failed to protect the DNA. The amount of total polyphenolics in the extracts was measured by spectrophotometric method. The methanolic extract contained higher polyphenolic contents than aqueous extract. Significant positive correlations were observed (P < .05) between results of phenolic content estimation and that of antioxidant assays. Hence, high-performance liquid chromatography analysis was performed to identify few major phenolic compounds that might be responsible for these therapeutic properties. These results indicate that rhizome of R. emodi possesses antioxidant and cytotoxic activities and therefore have therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.