[1] We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic-hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO 2 fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil-gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (K c ). For each area, we computed the values of K c which range from 0.4 to 2.3 W m À1°CÀ1 . Using the CO 2 soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.
Long‐duration time series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000–2008 period. A continuous increase of the CO2 concentrations and a general decrease of the CH4 concentrations are interpreted to be the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O‐CO2‐He‐N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983–1984 episode of volcanic unrest (1983–1984 bradyseism). The change starts in 2000, concurrently with the occurrence of relatively deep, long‐period seismic events which were the indicator of the opening of an easy ascent pathway for the transfer of magmatic fluids toward the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations and seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.