Three experiments were conducted to evaluate a novel source of high-protein distillers dried grains produced by Buhler Inc. (HP-DDG(Buhler)) and fed to growing pigs. The standardized ileal digestibility (SID) of AA in HP-DDG(Buhler) and in soybean meal (SBM) was determined in Exp. 1. Nine pigs (109.8 +/- 2.78 kg of BW) were fitted with a T-cannula in the distal ileum and allotted to a triplicated 3 x 3 Latin square design with 3 diets and 3 periods per square. Diets containing HP-DDG(Buhler) or SBM as the only source of AA and an N-free diet were formulated. The SID of indispensable AA was less (P < 0.01) in HP-DDG(Buhler) than in SBM (Arg, 87.5 vs. 93.9%; His, 76.7 vs. 88.7%; Ile, 76.4 vs. 87.5%; Leu, 77.8 vs. 86.8%; Lys, 75.4 vs. 88.4%; Met, 82.8 vs. 88.4%; Phe, 77.9 vs. 87.3%; Thr, 72.5 vs. 83.5%; Trp, 85.1 vs. 91.0%; Val, 73.3 vs. 84.3%). The DE and ME in HP-DDG(Buhler) and in corn were measured in Exp. 2 using 16 growing barrows (24.6 +/- 1.66 kg of BW). A corn-based diet and a diet containing 50% corn and 48.2% HP-DDG(Buhler) were formulated. The total collection method and the difference procedures were used. The concentrations of DE and ME in HP-DDG(Buhler) were greater (P < 0.001) than in corn (5,043 vs. 4,002 kcal/kg of DM and 4,690 vs. 3,921 kcal/kg of DM, respectively). Experiment 3 was a 9-wk growth assay using 40 pigs (initial BW: 58.2 +/- 2.28 kg) allotted to 5 dietary treatments, with 8 replicates of individually housed pigs per treatment. Treatments included a control diet based on corn and SBM and 4 diets in which HP-DDG(Buhler) replaced 33, 66, 66, or 100% of the SBM in the control diet. All HP-DDG(Buhler) diets contained supplemental Lys and Thr to provide similar concentrations of SID Lys and Thr in all diets; one of the diets in which HP-DDG(Buhler) replaced 66% of the SBM and the diet in which HP-DDG(Buhler) replaced 100% of the SBM also contained crystalline Trp. Dietary treatments had no effect on ADG (1.15, 1.13, 1.16, 1.12, and 1.14 kg), ADFI (3.33, 3.35, 3.39, 3.30, and 3.33 kg), or G:F (0.35, 0.34, 0.34, 0.34, and 0.34 kg/kg). Carcass traits of pigs fed the diet in which HP-DDG(Buhler) replaced 100% of the SBM were not different from those of pigs fed the control diet. In conclusion, HP-DDG(Buhler) contains more DE and ME than corn, but has decreased SID values for AA compared with SBM. Soybean meal can be replaced by HP-DDG(Buhler) in diets fed to finishing pigs without any effect on growth performance or carcass characteristics, provided that diets are adequate in indispensable AA.
The objectives of this experiment were 1) to determine the NE of soybean oil (SBO) and choice white grease (CWG) fed to growing and finishing pigs, 2) to evaluate the effects of inclusion rate of SBO on the NE by growing and finishing pigs, and 3) to determine if there is a difference in the NE of SBO and CWG between growing and finishing pigs. Forty-eight growing (initial BW: 22.13 ± 1.78 kg) and 48 finishing (initial BW: 84.17 ± 5.80 kg) barrows were used, and they were housed and fed individually. Within each stage of growth, pigs were allotted to 8 outcome groups of 6 barrows based on BW. Within each outcome group, pigs were randomly allotted to 1 of 6 groups. Two groups at each stage of growth served as an initial slaughter group. Pigs in the remaining groups were assigned to 4 dietary treatments and slaughtered at the conclusion of the experiment. The basal diet contained corn, soybean meal, and no supplemental lipids. Three additional diets were formulated by mixing 95% of the basal diet and 5% SBO, 90% of the basal diet and 10% SBO, or 90% of the basal diet and 10% CWG. Average daily gain and G:F for finishing pigs and apparent total tract digestibility of energy for growing and finishing pigs increased (linear, P < 0.05) with lipid content, but was not affected by lipid source. The lipid gain:protein gain ratio and the energy retention also increased (linear, P ≤ 0.05) with lipid content in growing and finishing pigs. There were no interactive effects between lipid content and stage of growth or between lipid source and stage of growth on the NE of diets and the NE of dietary lipids. The NE of diets increased (linear, P < 0.01) with increasing SBO (2,056, 2,206, and 2,318 kcal/kg for diets containing 0, 5, or 10% SBO). The NE of the diet containing 10% CWG (2,440 kcal/kg) was greater (P < 0.05) than the NE of the diet containing 10% SBO. The NE of diets was greater (P < 0.05) for finishing pigs than for growing pigs regardless of lipid content or source. The NE of SBO included at 5% (5,073 kcal/kg) was not different from the NE of SBO included at 10% (4,679 kcal/kg), but the NE of CWG (5,900 kcal/kg) was greater (P < 0.05) than the NE of SBO. The stage of growth had no impact on the NE of SBO or CWG. In conclusion, the NE of lipids is not affected by the content of dietary lipids, but the NE of CWG is greater than the NE of SBO.
A total of 54 finishing barrows (initial BW = 99.8 ± 5.1 kg; PIC C22 × 337) reared in individual pens were allotted to 1 of 6 dietary treatments in a 2 × 3 factorial arrangement of treatments with 2 levels of ractopamine (0 and 7.4 mg/kg) and 3 levels of dietary energy (high, 3,537; medium, 3,369; and low, 3,317 kcal of ME/kg) to determine the effects of dietary ractopamine and various energy levels on growth performance, carcass characteristics, and meat quality of finishing pigs. High-energy diets were corn-soybean-meal-based with 4% added fat; medium-energy diets were corn-soybean meal based with 0.5% added fat; and low-energy diets were corn-soybean meal based with 0.5% added fat and 15% wheat middlings. Diets within each ractopamine level were formulated to contain the same standardized ileal digestible Lys:ME (0 mg/kg, 1.82; and 7.4 mg/kg, 2.65 g/Mcal of ME). Individual pig BW and feed disappearance were recorded at the beginning and conclusion (d 21) of the study. On d 21, pigs were slaughtered for determination of carcass characteristics and meat quality. No ractopamine × energy level interactions (P > 0.10) were observed for any response criteria. Final BW (125.2 vs. 121.1 kg), ADG (1.2 vs. 1.0 kg/d), and G:F (0.31 vs. 0.40) were improved (P < 0.001) with feeding of ractopamine diets. Feeding of the low-energy diet reduced (P = 0.001) final BW and ADG compared with the high- and medium-energy diets. Gain:feed was reduced (P = 0.005) when the medium-energy diets were fed compared with the high-energy diets. Additionally, G:F was reduced (P = 0.002) when the low-energy diets were compared with the high- and medium-energy diets. Feeding ractopamine diets increased (P < 0.05) HCW (93.6 vs. 89.9 kg) and LM area (51.2 vs. 44.2 cm(2)). The LM pH decline was reduced (P ≤ 0.05) by feeding ractopamine diets. The feeding of low-energy diets reduced (P = 0.001) HCW when compared with the high- and medium-energy diets and reduced (P = 0.024) 10th-rib backfat when compared with the high- and medium-energy diet. These data indicate that feeding ractopamine diets improved growth performance and carcass characteristics, while having little or no detrimental effect on meat quality. Reductions in energy content of the diet by adding 15% wheat middlings resulted in impaired ADG, G:F, and 10th-rib backfat. There were no ractopamine × energy level interactions in this trial, which indicates that the improvements resulting from feeding ractopamine were present regardless of the dietary energy levels.
Two 5-wk experiments were conducted to determine the effects of water and diet acidification with and without antibiotics on weanling pig growth performance and microbial shedding. In Exp. 1, 204 pigs (19.2 d of age) were used in a 3 x 2 factorial, with 3 dietary treatments fed with or without water acidification (2.58 mL/L of a propionic acid blend; KEM SAN, Kemin Americas, Des Moines, IA). Dietary treatments were: 1) control, 2) control + 55 ppm of carbadox (CB), and 3) dietary acid [DA; control + 0.4% organic acid-based blend (fumaric, lactate, citric, propionic, and benzoic acids; Kemin Americas)] on d 0 to 7 followed by 0.2% inorganic acid-based blend (phosphoric, fumaric, lactic, and citric acids; Kemin Americas) on d 7 to 34. In Exp. 2, 210 pigs (average 18.3 d of age) were fed 1 of 3 dietary treatments: 1) control, 2) control + 55 ppm of CB, and 3) control + 38.6 ppm of tiamulin + 441 ppm of chlortetracycline on d 0 to 7 followed by 110 ppm of chlortetracycline on d 7 to 35 (TC) with or without dietary acidification (same as Exp. 1) in a 3 x 2 factorial arrangement of treatments. For both experiments, the pigs were allotted based on genetics, sex, and initial BW [5.5 kg (Exp. 1) or 5.6 kg (Exp. 2)]. Pigs were housed at 6 or 7 (Exp. 1) and 7 (Exp. 2) pigs/pen. Treatments were fed in 3 phases: d 0 to 7, 7 to 21, and 21 to 35 (34 d, Exp. 1). Fecal grab samples were collected from 3 pigs/pen on d 6, 20, and 33 for measurement of pH and Escherichia coli. During phase 3 and overall in Exp. 1, pigs fed CB had greater (P< 0.001) ADG (overall ADG, 389 vs. 348, and 348 g/d, respectively), ADFI (P < 0.007, 608 vs. 559, and 554 g/d, respectively), and d 34 BW (P < 0.001, 18.8 vs. 17.3, and 17.3 kg, respectively) than pigs fed NC and DA. Phase 3 ADG was improved (P < 0.01) by water acidification across all diets. In Exp. 2, pigs fed CB and TC had greater ADG (P < 0.004; 315 and 303 vs. 270 g/d, respectively), ADFI (P < 0.01), and d 35 BW (P < 0.002; 16.7 and 16.2 vs. 15.1 kg, respectively) than pigs fed NC. There was a tendency (P < 0.08) for an improvement in ADG when DA was added to the NC or TC, but decreased ADG when DA was added to CB.
The objectives of this experiment were 1) to determine the effect of dietary soybean hulls (SBH) and wheat middlings (WM) on body composition, nutrient and energy retention, and the NE of diets and ingredients fed to growing or finishing pigs and 2) to determine if finishing pigs use the energy in SBH and WM more efficiently than growing pigs. Forty growing barrows (initial BW: 25.4 ± 0.7 kg) and 40 finishing barrows (initial BW: 84.8 ± 0.9 kg) were randomly allotted to 5 groups within each stage of growth. Two groups at each stage of growth served as the initial slaughter group. The remaining pigs were randomly assigned to 3 dietary treatments and harvested at the conclusion of the experiment. The basal diet was based on corn and soybean meal and was formulated to be adequate in all nutrients. Two additional diets were formulated by mixing 70% of the basal diet and 30% SBH or 30% WM. In the growing phase, ADG, G:F, and retention of lipids were greater (P < 0.05) for pigs fed the basal diet than for pigs fed the diets containing SBH or WM. Retention of energy was also greater (P < 0.05) for pigs fed the basal diet than for pigs fed the SBH. In the finishing phase, pigs fed the SBH diet tended (P = 0.10) to have a greater ADG than pigs fed the WM diet, and energy retention was greater (P < 0.05) for pigs fed the basal diet than for pigs fed the WM diet. The NE of the basal diet fed to growing pigs was greater (P < 0.01) than the NE of the diets containing SBH or WM, and there was a tendency for a greater (P = 0.05) NE of the basal diet than of the other diets when fed to finishing pigs. The NE of SBH did not differ from the NE of WM in either growing or finishing pigs, and there was no interaction between ingredients and stage of growth on the NE of diets or ingredients. The NE of diets for growing pigs (1,668 kcal/kg) was not different from the NE of diets for finishing pigs (1,823 kcal/kg), and the NE of the diets containing SBH (1,688 kcal/kg) was not different from the NE of the diets containing WM (1,803 kcal/kg). Likewise, the NE of SBH (603 kcal/kg) did not differ from the NE of WM (987 kcal/kg). In conclusion, inclusion of 30% SBH or WM decreases the performance and nutrient retention in growing pigs but has little impact on finishing pigs. The NE of the diets decreases with the inclusion of SBH and WM, but the NE of diets and ingredients is not affected by the BW of pigs. The NE of SBH is not different from the NE of WM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.