Rainfall-induced landslides are a common problem in residual soil slopes of the tropics. It is widely known that rainfall-induced slope failures are mainly caused by infiltration of rainwater; however, the response of a residual soil slope to infiltration is not fully understood. The difficulties lie in the quantification of the flux boundary condition across the slope surface with respect to infiltration and its effect on the pore-water pressure conditions in the slope. Therefore, it is important to understand the response of a slope to different rainfall conditions and the resulting changes in pore-water pressures and water contents. A residual soil slope in Singapore was instrumented with pore-water pressure, water content, and rainfall measuring devices, and studies were carried out under natural and simulated rainfalls. Results indicate that significant infiltration may occur in a residual soil slope during a rainfall. Small total rainfalls can contribute a larger infiltration percentage than large total rainfalls. The percentage of infiltration usually decreases with increasing total rainfalls. The study has indicated the existence of a threshold rainfall of about 10 mm for runoff generation to commence. Infiltration during wet periods may lead to the development of positive pore-water pressures as a consequence of a perched water table condition. Matric suctions are recovered gradually during dry periods due to redistribution. Soil water contents tend to be higher near the toe of the slope than at the crest irrespective of rainfall events, indicating subsurface movement of water in the downslope direction. The study has also indicated a correlation between rainfall amount and relative increase in pore-water pressure. The results can be used to quantify the flux boundary conditions required for the seepage analyses associated with rainfall-induced slope failures.Key words: infiltration, pore-water pressure, water content, residual soil, rainfall-induced slope failures.
Abstract:Characteristics of changes in pore-water pressure distribution are the main parameters associated with slope stability analysis involving unsaturated soils, which are directly affected by the flux boundary conditions (rainfall infiltration, evaporation and evapo-transpiration) at the soil-atmosphere interface. Four slopes were instrumented in two major geological formations in Singapore to provide real-time measurements of pore-water pressures and rainfall events on the slopes. The field monitoring results were analysed to characterize pore-water pressure distributions under various meteorological conditions and to study the effect of antecedent rainfall on pore-water pressure distributions in typical residual soil slopes under tropical climate. Slope stability analyses were also conducted for the best and worst pore-water pressure distributions recorded in each slope to determine the range of factor of safety for the slopes. Results indicate that, antecedent rainfall, initial pore-water pressures prior to a significant rainfall event as well as the magnitude of the rainfall event play a crucial role in the development of the worst pore-water pressure condition in a slope. The role of antecedent rainfall in the development of the worst pore-water pressure condition was found to be more significant in residual soils with low permeability as compared with that in residual soils with high permeability. Pore-water pressure variation due to rainfall was found to take place over a wide range in residual soils with higher permeability as compared to residual soils with lower permeability. The worst pore-water pressure profiles occurred when the total rainfall including the 5-day antecedent rainfall (in most cases) reached a maximum value during a wet period. The factor of safety of residual soils with low permeability was found to be unaffected by the worst pore-water pressure condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.