We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the chargetransfer gap. These crystal-field excitations are optically allowed due to the lack of inversion symmetry at the Cu sites. Optical polarization rotation measurements were used to study the structural chirality and magnetic order. The temperature dependence of the natural optical rotation, originating in the chiral crystal structure, provides evidence for a finite magneto-electric effect in the helimagnetic phase. We find a large magneto-optical susceptibility on the order of V(540 nm) ∼ 10 4 rad/T·m in the helimagnetic phase and a maximum Faraday rotation of ∼ 165 deg/mm in the ferrimagnetic phase. The large value of V can be explained by considering spin cluster formation and the relative ease of domain reorientation in this metamagnetic material. The magneto-optical activity allows us to map the magnetic phase diagram, including the skyrmion lattice phase. In addition to this, we probe and discuss the nature of the various magnetic phase transitions in Cu2OSeO3.
GaV4S8 is a multiferroic semiconductor hosting magnetic cycloid (Cyc) and Néel-type skyrmion lattice (SkL) phases with a broad region of thermal and magnetic stability. Here, we use timeresolved magneto-optical Kerr spectroscopy and micro-magnetic simulations to demonstrate the coherent generation of collective spin excitations in the Cyc and SkL phases driven by an opticallyinduced modulation of uniaxial anisotropy. Our results shed light on spin-dynamics in anisotropic materials hosting skyrmions and pave a new pathway for the optical control of their magnetic order.
We present a flexible and efficient ultrafast time-resolved spontaneous Raman spectroscopy setup to study collective excitation and quasi-particle dynamics in quantum materials. The setup has a broad energy tuning range extending from the visible to near infrared spectral regions for both the pump excitation and Raman probe pulses. Additionally, the balance between energy and time-resolution can be controlled. A high light collecting efficiency is realized by high numerical aperture collection optics and a high-throughput flexible spectrometer. We demonstrate the functionality of the setup with a study of the zone-center longitudinal optical phonon and hole continuum dynamics in silicon and discuss the role of the Raman tensor in time-resolved Raman scattering. In addition, we show an evidence for unequal phonon softening rates at different high symmetry points in the Brillouin zone of silicon by means of detecting pump-induced changes in the two-phonon overtone spectrum. Demagnetization dynamics in the helimagnet Cu2OSeO3 is studied by observing softening and broadening of a magnon after photo-excitation, underlining the unique power of measuring transient dynamics in the frequency domain, and the feasibility to study phase transitions in quantum materials.
Abstractα-RuCl3 is a promising candidate material to realize the so far elusive quantum spin liquid ground state. However, at low temperatures, the coexistence of different exchange interactions couple the effective pseudospins into an antiferromagnetically zigzag (ZZ) ordered state. The low-field evolution of spin structure is still a matter of debate and the magnetic anisotropy within the honeycomb planes is an open and challenging question. Here, we investigate the evolution of the ZZ order parameter by second-order magneto-optical effects, the magnetic linear dichroism and magnetic linear birefringence. Our results clarify the presence and nature of metamagnetic transitions in the ZZ phase of α-RuCl3. The experimental observations show the presence of initial magnetic domain repopulation followed by a spin-flop transition for small in-plane applied magnetic fields (≈1.6 T) along specific crystallographic directions. In addition, using a magneto-optical approach, we detected the recently reported emergence of a field-induced intermediate phase before suppressing the ZZ order. The results disclose the details of various angle-dependent in-plane metamagnetic transitions quantifying the bond-anisotropic interactions present in α-RuCl3.
SrRuO 3 , a 4d ferromagnet with multiple Weyl nodes at the Fermi level, offers a rich playground to design epitaxial heterostructures and superlattices with fascinating magnetic and magnetotransport properties. Interfacing ultrathin SrRuO 3 layers with large spin−orbit coupling 5d transition-metal oxides, such as SrIrO 3 , results in pronounced peaklike anomalies in the magnetic field dependence of the Hall resistivity. Such anomalies have been attributed either to the formation of Neél-type skyrmions or to modifications of the Berry curvature of the topologically nontrivial conduction bands near the Fermi level of SrRuO 3 . Here, epitaxial multilayers based on SrRuO 3 interfaced with 5d perovskite oxides, such as SrIrO 3 and SrHfO 3 , were studied. This work focuses on the magnetotransport properties of the multilayers, aiming to unravel the role played by the interfaces with 5d perovskites in the peaklike anomalies of the Hall resistance loops of SrRuO 3 layers. Interfacing with large band gap insulating SrHfO 3 layers did not influence the anomalous Hall resistance loops, while interfacing with the nominally paramagnetic semimetal SrIrO 3 resulted in pronounced peaklike anomalies, which have been lately attributed to a topological Hall effect contribution as a result of skyrmions. This interpretation is, however, under strong debate and lately alternative causes, such as inhomogeneity of the thickness and the electronic properties of the SrRuO 3 layers, have been considered. Aligned with these latter proposals, our findings reveal the central role played in the anomalies of the Hall resistivity loops by electronic inhomogeneity of SrRuO 3 layers due to the interfacing with semimetallic 5d 5 SrIrO 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.