The differences in genetic backgrounds between deciduous and permanent teeth might contribute to the differences in developmental processes, histological characteristics, and tooth life cycles. Here, we attempted to identify significantly different modules between permanent and deciduous teeth via network and pathway analyses. We identified 291 differentially expressed genes (DEGs) between permanent and deciduous teeth using significance analysis of microarray methods. Co-expression networks of DEGs were constructed by weighted gene co-expression network analysis (WGCNA). Three pathways with a significant number of DEGs and P value <0.01 were identified. Integrated co-expression network and pathway (pathway and adjacent gene) analyses were used to extract three pathway-related modules: the calcium signaling pathway-related, ECM-receptor interaction pathway-related, and neuroactive ligand-receptor interaction pathway-related modules. We also attempted to analyze the topological centralities (degree, closeness, stress, and betweenness) of co-expression networks and modules. Four genes (TMEM229A, PPAPDC1A, LEPREL1, and GAD1) and three pathway-related modules that were significantly different in the deciduous and permanent teeth showed similar properties and good centralities. The relative expression levels of key genes were validated, and the differential expression of TMEM229A, LEPREL1, and GAD1 was confirmed by reverse transcription-polymerase chain reaction (P < 0.05). In conclusion, the results of this study may provide a greater understanding of the molecular pathogenesis and potential biomarkers of the progression from deciduous to permanent teeth.
Infections of pigeons with herpesviruses have been described in several species of domestic and wild birds. In July 2012, increased mortality was observed in a hybrid meat-type pigeon flock in Beijing, China. Diagnostic tests led to the isolation of a virus designated columbid herpesvirus 1 BJ strain (CoHV-1BJ). Sequence analysis of the viral DNA polymerase catalytic subunit gene revealed a single open reading frame of 3753 nt encoding 1250 amino acids. Phylogenetic analysis revealed that the CoHV-1BJ is closely related to the members of the genus Mardivirus within the subfamily Alphaherpesvirinae. An experimental infection demonstrated that CoHV-1BJ is pathogenic to young pigeons, resulting in systemic infection with scattered focal necrosis in the liver and spleen. The results provide an initial assessment of herpesvirus infection in domestic pigeons in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.