The compensation of Mg-doped GaN is systematically studied by low-temperature photoluminescence and Raman spectroscopy using a series of samples with different Mg concentrations. Strongly doped samples are found to be highly compensated in electrical measurements. The compensation mechanism is directly related to the incorporation of Mg. Three different deep donor levels are found at 240±30, 350±30, and 850±30 meV from the conduction band, each giving rise to deep unstructured donor-acceptor pair emission.
We report on an improved quality of thick HVPE-GaN grown on MOCVD-GaN ‘template’ layers compared to the material grown directly on sapphire. The film-substrate interface revealed by cathodoluminescence measurements shows an absence of highly doped columnar structures which are typically present in thick HVPE-GaN films grown directly on sapphire. This improved structure results in a reduction of two orders of magnitude of the free carrier concentration from Hall measurements. It was found that the structure, morphology, electrical and optical properties of homoepitaxial thick GaN layers grown by HVPE were strongly influenced by the properties of the MOCVD-GaN ‘template’. Additionally the effect of Si doping of the GaN buffer layers on the HVPEGaN properties was analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.