Inadequate water resources management and a general decline in rainfall have aggravated water scarcity problems in the Upper Ewaso Ng'iro North Basin in Kenya. Furthermore, water use conflicts in the basin have escalated in recent decades due to increased competition for available water resources. Excessive abstraction of the declining river water mainly for irrigation in the Mount Kenya and Nyandarua foot zones often leads to reduced water flow during the dry seasons, greatly affecting downstream water users. Increased water use in the basin coupled with deterioration of the vegetative cover has resulted in reduced water flows in the Ewaso Ng'iro river and its major tributaries. In addition, lack of sufficient knowledge about available water resources and current lack of coordination in water resources management in the basin often result in water deficits which have hampered development in the downstream catchment. The goal of this study was to match the water requirements of various competing sectors in the basin with the available water resources in order to attain both economic and ecological sustainability. To achieve this, GIS techniques were used to quantify the spatial and temporal stream flow. The Water Evaluation and Planning (WEAP) model was applied to evaluate water resources development based on an equilibrium scenario of the current water demand. Water use was simulated for five different sectors (domestic, livestock, wildlife, irrigation and reserve). The analyses revealed that high water demand for irrigation was the main cause of excessive water abstraction particularly in the upstream catchments, giving rise to water shortages and consequently, water use conflicts downstream. The study, therefore, recommends that rainwater harvesting be promoted in the basin in order to improve water availability for productive use.
A conceptual flash flood early warning system for developing countries is described. The system uses rainfall intensity data from terrestrial microwave communication links and the geostationary Meteosat Second Generation satellite, i.e., two systems that are already in place and operational. Flash flood early warnings are based on a combination of the Flash Flood Guidance method and a hydrological model. The system will be maintained and operated through a public-private partnership, which includes a mobile telephone operator, a national meteorological service and an emergency relief service. The mobile telephone operator acts as both the supplier of raw input data and the disseminator of early warnings. The early warning system could significantly reduce the number of fatalities due to flash floods, improve the efficiency of disaster risk reduction efforts and OPEN ACCESS ISPRS Int. J. Geo-Inf. 2014, 3 585 play an important role in strengthening the resilience to climate change of developing countries in Africa. This paper describes the system that is currently being developed for Kenya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.