The numbers and distribution of the neurofibrillary tangles and neuritic plaques have been determined in several areas of the neocortex in brains affected by various degrees of severity of Alzheimer disease. The homotypical cortex of the "association" areas of the temporal, parietal, and frontal lobes are severely involved, whereas the motor, somatic sensory, and primary visual areas are virtually unaffected. The neurofibrillary tangles are mainly in the supra-and infragranular layers, particularly in layers Ill and V. In all areas except area 18 in the occipital lobe, there are approximately twice as many tangles in layer V as in layer III. The tangles are arranged in definite clusters, and those in the supra-and infragranular layers are in register. The neuritic plaques occur in all layers but predominantly affect layers II and Ill and do not show clustering. These data on the severity of the pathological involvement in different areas of the neocortex and the laminar distribution and the clustering of the tangles support the suggestion that the pathological changes in Alzheimer disease affect regions that are interconnected by well-defined groups of connections and that the disease process may extend along the connecting fibers. The invariable and severe involvement of the olfactory areas of the brain in this disease is in striking contrast to the minimal changes in the somatic sensory and primary visual areas and raises the possibility that the olfactory pathway may be initially involved.
Many potentially valuable techniques for the understanding of human neurobiological and neuropathological processes require the use of RNA obtained from postmortem tissue. As with earlier neurochemical studies, there are two particular problems posed by such tissue in comparison with tissue from experimental animals. These are the postmortem interval and the condition of the patient prior to death, referred to as the agonal state. We review the nature and extent of the effects of postmortem interval and agonal state on RNA in brain tissue, with particular reference to the study of neuropsychiatric disorders. Perhaps surprisingly, postmortem interval has at most a modest effect on RNA. Abundant intact and biologically active RNA is present in tissue frozen 36 h or more after death. Postmortem interval does not account for the marked variability observed among human brains in all RNA parameters. Despite the overall stability of RNA after death, some evidence suggests that individual RNAs may undergo postmortem decay. Less attention has been paid to the effects of agonal state. The existing data indicate that events in the premortem period such as hypoxia and coma can affect the amount of some messenger RNAs. The nature of agonal state influences depends on the messenger RNA in question, though the basis for this selective vulnerability is unknown. No agonal state effect on overall RNA level or activity has been found. The data show that postmortem brain tissue can be used for RNA research. However, considerable attention must be paid to controlling for the influences of pre-and postmortem factors, especially when quantitative analyses are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.