Oil has extensively been extracted from oil-bearing crops and traded globally as a major food commodity. There is always a huge demand from the fats and oils industries to increase oil yield because of profitability benefits. If extraction is conducted under mild operating conditions to preserve and improve the oil quality, then it would be an added value. Ultrasound that works on the cavitational action helps to fulfil the gap. Ultrasound is gaining tremendous interest as an alternative to replace the current conventional extractions approach because of its multiple benefits. Cavitation generated by ultrasound eases the release of oil from cell matrices, thereby allowing the extraction to be carried out under mild processing conditions. The effect enhances the oil yield whilst preserving the quality of the oil. In ultrasound, green solvents can be used to replace toxic organic solvents. Recent up-to-date approaches utilised a combination of ultrasound with enzyme, microwave and supercritical technology to further enhance the oil extraction. This review highlights a comprehensive work of the impact of ultrasound and ultrasound in combination with other technologies on oil extraction, which emphasises the extraction yield and physicochemical properties of the oil, such as fatty acid composition, oxidative stability with the retention of the lipophilic phytochemicals and iodine, saponification values and colour parameters. Understanding of ultrasonication techniques for oil extraction served to be essential and useful information for the fats and oils scientists from academia and industries to explore the possibility of employing a sustainable and mild approaches for extracting oil from various crops.
Sorghum is a drought-resistant crop widely spread in tropical regions of the American, African, and Asian continents. Sorghum flour is considered the main alternative for wheat flour, and it exhibits gluten-free nature. Generally, conventional wet chemical methods are used to analyze the nutritional profile of sorghum. Since many sorghum plants are available in breeding grounds, the application of conventional methods has limitations due to high cost and time consumption. Therefore, rapid screening protocols have been introduced as nondestructive alternatives. The current review highlights novel and portable devices that can be used to analyze the nutritional composition, color parameters, and pest resistance. Sorghum is often a traditional food item with minimal processing, and the review elaborates on emerging food applications and feasible food product developments from sorghum. The demand for gluten-free products has been rapidly increasing in developed countries. In order to develop food products according to market requirements, it is necessary to screen high-quality sorghum plants. Rapid analysis techniques effectively select the best sorghum types, and the novel tools have outperformed existing conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.