We present results on electron beam exposure of a self-assembled monolayer film as a self-developing positive resist on GaAs. A 1.5 nm thick monolayer of n-octadecanethiol (C18H37SH) deposited on a GaAs (100) substrate showed a electron beam sensitivity of about 100 μC/cm2. The monolayer resist was used as a mask for chemical etching of the GaAs. Patterns in GaAs have been created with widths approximately equal to the exposing electron beam width of 50 nm.
We report the realization and demonstration of novel semiconductor waveguide-coupled microcavity ring and disk resonators. For a 10.5-microm-diameter disk resonator, we measure a finesse of 120, a resonant linewidth of 0.18 nm, and a free-spectral range of 21.6 nm in the 1.55-mum-wavelength region. We present the nanofabrication methods and the experimental results for 10.5- and 20.5-mum-diameter ring and disk resonators to show the feasibility of such devices.
Thin-film fabrication techniques for forming three-dimensional ‘‘point contacts’’ are presented. As-fabricated nanobridges can be modified using electromigration to make the constriction region smaller or dirtier. Scientific applications to quantum transport studies, 1/f noise, and electromigration are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.