A calibration phantom was developed at the University of Cincinnati (UC) to determine detection efficiency and estimate the quantity of activity deposited in the axillary lymph nodes of a worker who had unknowingly sustained a wound contaminated with 241Am at some distant time in the past. This paper describes how the Livermore Torso Phantom was modified for calibrating direct, in vivo measurements of 241Am deposited in the axillary lymph nodes. Modifications involved milling a pair of parallel, flat bottom, cylindrical holes into the left and right shoulders (below the humeral head) of the Livermore Torso Phantom in which solid, 1.40-cm-diameter cylindrical rods were inserted. Each rod was fabricated using a muscle tissue substitute. One end of each rod contained a precisely known quantity of Am sealed in a 1-cm-diameter, 2.54-cm-deep well to simulate the axillary lymph nodes when inserted into the modified Livermore Torso Phantom. The fixed locations for the axillary lymph nodes in the phantom were determined according to the position of the Level I and the combined Level II + III axillary lymph nodes reported in the literature. Discrete calibration measurements for 241Am in the simulated axillary lymph nodes located in the right and left sides of the thorax were performed using pairs of high-resolution germanium detectors at UC and Lawrence Livermore National Laboratory. The percent efficiency for measuring the 59.5 keV photon from Am deposited in the right and left axillary lymph nodes using a pair of 3,000 mm2 detectors is 2.60 +/- 0.03 counts gamma-1 and 5.45 +/- 0.07 counts gamma-1, respectively. Activity deposited in the right and left axillary lymph nodes was found to contribute 12.5% and 19.7%, respectively, to a lung measurement and 1.2% and 0.2%, respectively, to a liver measurement. Thus, radioactive material mobilized from a wound in a finger or hand and deposited in the axillary lymph nodes has been shown to confound results of a direct, in vivo measurement of the lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.