Abstract. The purpose of this study was to relate regional variation in litter mass-loss rates (first year) in pine forests to climate across a large, continental-scale area. The variation in mass-loss rate was analyzed using 39 experimental sites spanning climatic regions from the subarctic to subtropical and Mediterranean: the latitudinal gradient ranged from 31 N to 70 N and may represent the the largest geographical area that has ever been sampled and observed for the purpose of studying biogeochemical processes. Because of unified site design and uniform laboratory procedures, data from all sites were directly comparable and permitted a determination of the relative influence of climate versus substrate quality viewed from the perspective of broad regional scales.Simple correlation applied to the entire data set indicated that annual actual evapotranspiration (AET) should be the leading climatic constraint on mass-loss rates (R2d = 128 0.496). The combination of AET, average July temp. and average annual temp. could explain about 70% of the sites' variability on litter mass-loss. In an analysis of 23 Scots pine sites north of the Alps and Carpatians AET alone could account for about 65% of the variation and the addition of a substrate-quality variable was sufficiently significant to be used in a model.The influence of litter quality was introduced into a model, using data from 11 sites at which litter of different quality had been incubated. These sites are found in Germany, the Netherlands, Sweden and Finland. At any one site most (> 90%/6) of the variation in mass-loss rates could be explained by one of the litter-quality variables giving concentration of nitrogen, phosphorus or water solubles. However, even when these models included nitrogen or phosphorus even small changes in potential evapotranspiration resulted in large changes in early-phase decay rates.Further regional subdivision of the data set, resulted in a range of strength in the relationship between loss rate and climatic variables, from very weak in Central Europe to strong for the Scandinavian and Atlantic coast sites (Rdj = 0.912; AET versus litter mass loss). Much of the variation in observed loss rates could be related to continental versus marine/Atlantic influences. Inland locations had mass-loss rates lower than should be expected on the basis of for example AET alone. Attempts to include seasonality variables were not successful. It is clear that either unknown errors and biases, or, unknown variables are causing these regional differences in response to climatic variables. Nevertheless these results show the powerful influence of climate as a control of the broad-scale geography of mass-loss rates and substrate quality at the stand level.Some of these relationships between mass-loss rate and climatic variables are among the highest ever reported, probably because of the care taken to select uniform sites and experimental methods. This suggest that superior, base line maps of predicted mass-loss rates could be produced using climatic...
To detect effects of Cu pollution, the Cu tolerance of soil bacterial communities extracted from several vineyards located in NW Spain was measured. Bacterial community tolerance was estimated by means of the thymidine (TdR) and leucine (Leu) incorporation techniques using either IC(50) values (the log of the metal concentration that reduced incorporation to 50%) or the percentage of activity at one specific Cu concentration (10(-6) mol L(-1)). The tolerance measurements by the TdR incorporation technique were similar to those obtained by the Leu incorporation method, indicating that the two methods were equivalent in terms of suitability for detecting the toxicity of Cu to soil bacterial communities. The two tolerance indices considered (IC50 values and percentage of activity) were closely correlated (r = 0.975, P < 0.001), showing that both were equally good in measuring Cu tolerance of the bacterial community. An increased bacterial community tolerance to Cu, indicating a pollution effect, was observed in vineyard soils with more than 100 mg Cu kg(-1) soil. Thus, the long-term use of Cu in vineyards has a toxic effect on the soil bacterial community, resulting in an increased tolerance. An effect of increased levels of Cu could not be detected when measuring bacterial community activity, pointing to the increased sensitivity to detect toxicity in field studies using tolerance measurements.
Significant differences in the chemical composition of falling needle litter were found among various pine species. A comparison between the needle litter of northern species (Scots pine and lodgepole pine) and that of 17 other, southern species combined showed that concentrations of N, P, Mg, K, and lignin were significantly lower in the northern group. In contrast, the Mn concentration was significantly higher in this northern group. Along a transect from the Barents Sea (69°45′N) to the Carpathian Mountains (49°53′N), concentrations of N, P, S, and K in Scots pine litter fall increased significantly. The best-fit regression models described asymptotic curves, suggesting that concentrations of these major nutrients approach their maximum values at sites with high values for actual evapotranspiration (AET). Low values were found in the north. By contrast, Mn concentrations, increased with latitude and decreased with increasing AET. High covariation among concentrations of the major nutrients (N, P, S, and K) can be attributed to their being major constituents of structural compounds. Analysis of various regression models relating the chemical composition of needle litter fall to latitude and AET, together with a factor analysis, suggested that concentrations of N, P, S, and K were related mainly to climatic conditions, whereas those of Mg and Mn were related more to site-specific properties such as soil fertility. A high level of predictability was found for concentrations of N, P, S, and K using multiple regression, with values for R2adj between 0.63 and 0.93. Key words: litter fall, chemical composition, interspecific variability, geographical variability, climate, soil fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.