This paper describes an application of the Boussinesq-type COULWAVE model to study the wave hydrodynamics in the vicinity of a multi-functional artificial reef (MFAR). This reef is under investigation and consists of a supplementary protection solution for the Leirosa sand dune system located at South of Figueira da Foz, on the Portuguese West coast. Such installation near the coastline is expected to contribute to enhance the surfing conditions in the area, protect the sand dune system in the surroundings of Leirosa beach, and increase its environmental value. Numerical calculations with the COULWAVE model were performed for four test cases, considering two reef geometries (differing in the reef angle) and two incident wave conditions (storm condition and a common wave condition). Comparisons between the results obtained, in terms of wave heights and breaking line positions allow us to assess the influence of the reef on the hydrodynamics near the beach and around the reef. Moreover, the reef performance was analysed in terms of surfability and coastal protection. The surfability parameters (breaker height, Iribarren number and peel angle) were calculated for each test case using the numerical wave heights, wave directions and wave breaking positions. Comparisons of parameters allow characterizing the most appropriate configuration of the reef to improve the surfing conditions in the study area. A methodology based on numerical free surface elevations and horizontal velocity components was developed to calculate wave directions, since this is not a direct output of the COULWAVE model. Concerning coastal protection, analyses of the mean currents around the reef were used together with observations of the velocity cells near the shoreline as an indication of the sediment transport.
As a new alternative countermeasure to protect the coastal zone and to increase the surfing possibilities in the Leirosa area of Portugal, multifunctional artificial reefs were investigated numerically in this paper. The primary surfing parameters used in the design (i.e., breaker type, peel angle, wave height at breaking, and currents around the artificial reef) were analyzed. The reef functionality was also analyzed for coastal protection. Two reef geometries with different reef angles of 45 and 66°were tested, considering two design wave conditions (storm and common) and two tide levels (medium and low). Simulations show that both reef geometries are adequate for surfing, although the reef angle of 66°is more suitable for standard surfers, and the 45°angle is more adequate for advanced/professional surfers. A morphodynamic study should be carried out to analyze the efficiency of the artificial surf reef for coastal protection.
A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. Aplicação do sistema hidralerta na avaliação do risco associado ao galgamento no porto da Praia da Vitória Autor(es): Fortes, C.; Reis, R.; Reis, M. T.; Poseiro, P.; Capitão, R.; Pinheiro, L.; Craveiro, J.; Santos, J. A.; Silva, J. C. Ferreira; Martinho, M.; Sabino, A.; Rodrigues, A.; Raposeiro, P.; Silva, C.; Simões, E. B. Azevedo; Vieira, F.; Rodrigues, M. C. Guimarães 2014 385 Capítulo 3.2: Riscos climáticos e hidRológicos http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.