Background Despite the fact that severe itch is common in many dermatological diseases, the therapeutic arsenal against itching is limited. From neurophysiological experiments, using a new technique termed cutaneous field stimulation, it is known that acute itch can be effectively relieved by stimulation of cutaneous nociceptors. Methods We tested the effects of cutaneous field stimulation (25 min, 16 electrodes, 4 Hz per electrode, up to 0.8 mA) on chronic itch due to atopic dermatitis. Transcutaneous electrical nerve stimulation (100 Hz, up to 26 mA) was used for comparison. In 27 patients, itch was measured just prior to, during and at regular intervals up to 12 h after either type of treatment. Results Both treatments augmented the itch sensation during ongoing stimulation, presumably reflecting an altered sensory processing in the somatosensory pathways of chronic itch patients. However, after cessation of cutaneous field stimulation, but not transcutaneous electrical nerve stimulation, the itch sensation was significantly depressed for up to 7 h. The peak inhibitory effect (about 25% of control) was reached between 1 and 5 h poststimulation. Neither treatment had any significant effect on alloknesis, as measured before and 10 min after stimulation. Conclusion It is concluded that cutaneous field stimulation strongly depresses chronic itch, and is a potentially useful symptomatic treatment of itch.
Model melanins, synthesized with different cysteinyldopamine/dopamine ratios in the incubates, were oxidized with KMnO4 and the resulting compounds were analyzed by HPLC. The ratios between a phaeomelanin‐derived compound, thiazole‐4,5‐dicarboxylic acid (TDCA), and a compound derived from eumelanin, pyrrole‐2,3,5‐tricarboxylic acid (PTCA), reflected the composition of the model melanins. The neuromelanin of the human substantia nigra was isolated, and the pigment, as well as intact brain tissue from human substantia nigra was oxidized with KMnO4 and the TDCA/PTCA ratios were determined. Analysis of the isolated neuromelanin showed it to contain 2.3% sulfur and 8.1% nitrogen. The sulfur content indicates the pigment is a mixed‐type melanin, and the TDCA/PTCA ratio indicates that it consists of units derived from benzothiazines and from indoles in about equal amounts.
Information on the composition of melanins is obtained by analysis both of 4-amino-3-hydroxyphenylalanine (AHP) after hydriodic acid degradation and of pyrrole-2,3,5-tricarboxylic acid (PTCA) after potassium permanganate oxidation. Analysis of thiazole-4,5-dicarboxylic acid (TDCA) and pyrrole-2,3-dicarboxylic acid (PDCA) after permanganate oxidation, provides additional information on the composition, TDCA on pheomelanin residues, and PDCA on indolic residues without carboxy groups. Using model melanins formed from dopa and cysteinyldopa in different proportions, we found the TDCA/(PTCA+PDCA) ratio to yield a reliable estimate of the relative proportions of pheomelanin and eumelanin. The PDCA/PTCA ratio reflects the relationship between indole residues with and without carboxy groups. We have analyzed degradation products from cultures of IGR 1, an extensively studied melanoma cell line. Cell cultures were harvested after 2, 4, and 7 days. Culture media were changed after 2 days in all series, and also after 4 days in one series harvested at 7 days. Cells without medium change had seven times the amount of melanin found in cultures with medium change. The PDCA/PTCA ratio decreased with increasing amounts of melanin. With increased melanization, eumelanin is increased relatively more than pheomelanin. The cell content of 5-S-cysteinyldopa (5-S-CD) was similar in all cultures, while 6-hydroxy-5-methoxyindole-2-carboxylic acid (6H5MICA), a eumelanin precursor metabolite, was found in increased amounts of media of heavily pigmented cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.