Tagged magnetic resonance imaging (MRI) is unique in its ability to noninvasively image the motion and deformation of the heart in vivo, but one of the fundamental reasons limiting its use in the clinical environment is the absence of automated tools to derive clinically useful information from tagged MR images. In this paper, we present a novel and fully automated technique based on nonrigid image registration using multilevel free-form deformations (MFFDs) for the analysis of myocardial motion using tagged MRI. The novel aspect of our technique is its integrated nature for tag localization and deformation field reconstruction using image registration and voxel based similarity measures. To extract the motion field within the myocardium during systole we register a sequence of images taken during systole to a set of reference images taken at end-diastole, maximizing the normalized mutual information between the images. We use both short-axis and long-axis images of the heart to estimate the full four-dimensional motion field within the myocardium. We also present validation results from data acquired from twelve volunteers.
In this paper, we present a technique that can be used to transform the motion or deformation fields defined in the coordinate system of one subject into the coordinate system of another subject. Such a transformation accounts for the differences in the coordinate systems of the two subjects due to misalignment and size/shape variation, enabling the motion or deformation of each of the subjects to be directly quantitatively and qualitatively compared. The field transformation is performed by using a nonrigid registration algorithm to determine the intersubject coordinate system mapping from the first subject to the second subject. This fixes the relationship between the coordinate systems of the two subjects, and allows us to recover the deformation/motion vectors of the second subject for each corresponding point in the first subject. Since these vectors are still aligned with the coordinate system of the second subject, the inverse of the intersubject coordinate mapping is required to transform these vectors into the coordinate system of the first subject, and we approximate this inverse using a numerical line integral method. The accuracy of our numerical inversion technique is demonstrated using a synthetic example, after which we present applications of our method to sequences of cardiac and brain images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.