In this paper, a centrifugal force model is developed for pedestrian dynamics. The effects of both the headway and the relative velocity among pedestrians are taken into account, which can be expressed by a "centrifugal force" term in dynamic equation. The jamming probability due to the arching at exits for crowd flows is provided. A quantitative analysis of the crowd flowing out of a hall shows that the average leaving time T is a function of the exit width W in negative power. The related simulation indicates that the proposed model is able to reproduce the self-organization phenomena of lane formation for sparse flows.
The turbulence and flows at the plasma edge during the L–I–H, L–I–L and single-step L–H transitions have been measured directly using two reciprocating Langmuir probe systems at the outer midplane with several newly designed probe arrays in the EAST superconducting tokamak. The E × B velocity, turbulence level and turbulent Reynolds stress at ∼1 cm inside the separatrix ramp-up in the last ∼20 ms preceding the single-step L–H transition, but remain nearly constant near the separatrix, indicating an increase in the radial gradients at the plasma edge. The kinetic energy transfer rate from the edge turbulence to the E × B flows is significantly enhanced only in the last ∼10 ms and peaks just prior to the L–H transition. The E × B velocity measured inside the separatrix, which is typically in the electron diamagnetic drift direction in the L-mode, decays towards the ion diamagnetic drift direction in response to fluctuation suppression at the onset of the single-step L–H, L–I–L as well as L–I–H transitions. One important distinction between the L–I–H and the L–I–L transitions has been observed, with respect to the evolution of the edge pressure gradient and mean E × B flow during the I-phase. Both of them ramp up gradually during the L–I–H transition, but change little during the L–I–L transition, which may indicate that a gradual buildup of the edge pedestal and mean E × B flow during the I-phase leads to the final transition into the H-mode. In addition, the transition data in EAST strongly suggest that the divertor pumping capability is an important ingredient in determining the transition behaviour and power threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.