Organic photovoltaic cells (OPV) with good near‐IR photoactivity are created from highly textured titanyl phthalocyanine (TiOPc)/C60 heterojunctions. Vacuum deposited TiOPc thin films are converted to the near‐IR absorbing “Phase II” polymorph using post‐deposition solvent annealing. The Phase I → Phase II transition broadens the absorbance spectrum of the Pc film producing absorptivities (α ≈ 105 cm−1) from 600–900 nm, along with substantial texturing of the Pc layer. Atomic force microscopy and field‐emission scanning electron microscopy of the solvent annealed films show that the surface roughness of the Pc layers is increased by a factor of greater than 2× as a result of the phase transformation. Current–voltage (J–V) responses for white light illumination of ITO (100 nm)/TiOPc (20 nm)/C60 (40 nm)/BCP (10 nm)/Al (100 nm) OPVs show a near doubling of the short‐circuit photocurrent (JSC), with only a small decrease in open‐circuit photopotential (VOC), and a concomitant increase in power conversion efficiency. Incident photon current efficiency (IPCE) plots confirmed the enhanced near‐IR OPV activity, with maximum IPCE values of ca. 30% for devices using Phase II‐only TiOPc films. UV‐photoelectron spectroscopy (UPS) of TiOPc/C60 heterojunctions, for both Phase I and Phase II TiOPc films, suggest that the Phase II polymorph has nearly the same HOMO energy as seen in the Phase I polymorph, and similar frontier orbital energy offsets, EHOMOPc–ELUMOC60, leading to comparable open‐circuit photovoltages. These studies suggest new strategies for the formation of higher efficiency OPVs using processing conditions which lead to enhance near‐IR absorptivities, and extensive texturing of crystalline donor or acceptor films.
Charge-transfer efficiency at the active layer/transparent conducting oxide (TCO) interface is thought to be a key parameter contributing to the overall efficiency of organic electronic devices such as organic photovoltaics (OPVs). Modification of the TCO surface with a redox-active surface modifier is a possible approach toward enhancing OPV efficiency by providing an efficient charge-transfer pathway between either hole- or electron-harvesting contacts and the organic active layer. Here we report on the modification of indium–tin oxide (ITO) electrodes with two perylene diimides (PDIs), coupled to phosphonic acid (PA) binding groups through a p-phenylene bridge or a biphenyl-4,4′-diyl bridge (PDI–phenyl–PA and PDI–diphenyl–PA, respectively). We used two different deposition techniques: adsorption from solution (SA) and spin coating (SC), to create three types of monolayer films on ITO: SA PDI–phenyl–PA, SA PDI–diphenyl–PA, and SC PDI–phenyl–PA. These thin films, designed to act as “charge-transfer mediators”, were used to study relationships between molecular structure, electron-transfer (ET) kinetics, and electronic structure. Molecular orientation was assessed using polarized attenuated total reflectance (ATR) spectroscopy; the average tilt angle between the PDI molecular axis and the ITO surface normal for both SA films was about 30°, while films deposited using spin-coating were more in-plane, with an average tilt angle of 45°. To our knowledge, these are the first reported measurements of orientation in PDI monolayers on ITO electrodes. Electrochemical and ultraviolet photoemission spectroscopy studies showed that all three PDI–PA films have similar reduction potentials, electron affinities, and ionization energies, indicating that differences in bridge length and molecular orientation did not measurably affect the interfacial electronic structure. ET rate constants ranging from 5 to 50 × 103 s–1 were measured using potential-modulated ATR spectroscopy. The kinetic and thermodynamic data, along with a photoelectrochemical comparison of electron injection efficiency, show that PDI–PA films are capable of serving as a charge-transfer mediator between an ITO electrode and an organic active layer, and thus have potential for use as electron-collection contacts in inverted OPV devices.
We show for the first time that the frontier orbital energetics (conduction band minimum (CBM) and valence band maximum (VBM)) of device-relevant, methylammonium bromide (MABr)-doped, formamidinium lead trihalide perovskite (FA-PVSK) thin films can be characterized using UV-vis spectroelectrochemistry, which provides an additional and straightforward experimental technique for determining energy band values relative to more traditional methods based on photoelectron spectroscopy. FA-PVSK films are processed via a two-step deposition process, known to provide high efficiency solar cells, on semitransparent indium tin oxide (ITO) and titanium dioxide (TiO) electrodes. Spectroelectrochemical characterization is carried out in a nonsolvent electrolyte, and the onset potential for bleaching of the FA-PVSK absorbance is used to estimate the CBM, which provides values of ca. -4.0 eV versus vacuum on both ITO and TiO electrodes. Since electron injection occurs from the electrode to the perovskite, the CBM is uniquely probed at the buried metal oxide/FA-PVSK interface, which is otherwise difficult to characterize for thick films. UPS characterization of the same FA-PVSK thin films provide complementary near-surface measurements of the VBM and electrode-dependent energetics. In addition to energetics, controlled electrochemical charge injection experiments in the nonsolvent electrolyte reveal decomposition pathways that are related to morphology-dependent heterogeneity in the electrochemical and chemical stability of these films. X-ray photoelectron spectroscopy of these electrochemically treated FA-PVSK films shows changes in the average near-surface stoichiometry, which suggests that lead-rich crystal termination planes are the most likely sites for electron trapping and thus nanometer-scale perovskite decomposition.
This investigation elucidates critical Brønsted and Lewis acid–base interactions at the titanium dioxide (TiO2) surface that control the interfacial composition and, thus, the energetics of vacuum-processed methylammonium lead iodide (MAPbI3) perovskite active layers (PALs). In situ photoelectron spectroscopy analysis shows that interfacial growth, chemical composition, and energetics of co-deposited methylammonium iodide (MAI)/PbI2 thin films are significantly different on bare and (3-aminopropyl)triethoxysilane (APTES)-functionalized TiO2 surfaces. Mass spectroscopy analysis indicates that MAI dissociates into hydrogen iodide and methylamine in the gas phase and suggests that MAPbI3 nucleation is preceded by adsorption and coupling of these volatile MAI precursors. Prior to MAPbI3 nucleation on the bare TiO2 surface, we suggest that high coverages of methylamine adsorbed to surface defect sites (e.g., undercoordinated Ti atoms and hydroxyls) promote island-like growth of large, PbI2-rich nuclei that inhibit nucleation and lead to a thick substoichiometric interface layer that impedes charge transport and collection energetics. APTES functional groups passivate TiO2 surface defects and facilitate more conformal growth of small, PbI2-rich nuclei that enhance MAPbI3 nucleation and significantly improve interfacial energetics for charge transport and extraction. This work highlights the considerable influence of TiO2 surface chemistry on PAL composition and energetics, which are critical factors that impact the performance and long stability of these materials in emerging photovoltaic device technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.