In addition to the multiple actual or possible applications of metal and ceramic foams in various technological fields, their thermal properties make them a good candidate for utilization as fire barriers. Several studies have shown experimentally their exceptional fire retardance due to their low apparent thermal conductivity. However, while the thermal properties of this porous material have been widely studied at ambient temperature and are, at present, well-known, their thermal behaviour at fire temperatures remains relatively unexplored. Indeed, at such temperatures, the major difficulties are not only due to the fact that thermal measurements are rendered fussy since heavy equipments are required but also stem from the fact that a significant part of the heat transfer occurs by thermal radiation which is much more difficult to evaluate than conductive heat transfer. Therefore, the present chapter is written with a view to report progress on the knowledge of heat transfer in open cell foams and to enlighten the reader on the mechanisms of heat transfer at high temperatures. A first part is devoted to the review of the prior published works on the experimental or theoretical characterisations of radiative and conductive heat transfers from ambient to high temperatures. By taking inspiration from the concepts and models presented in these previous works, we propose, in a second part, a model of prediction of the conductive and radiative contributions to heat transfer at fire temperatures. This analytical model is based on numerical simulations applied to real foams and takes into account the structure of the foam and the optical and thermal properties of the constituents. In a third part, we propose an innovative experimental technique of characterization of heat transfer in foams at high temperatures which 12 permit to evaluate independently the radiative and conductive contributions from a unique and simple measurement. The experimental results obtained on several metal and ceramic foams are compared to the results predicted by our numerical model. The good adequacy between experimental and theoretical results show the consistency of both approaches.
Expanded polystyrene (EPS) foams are one of the most widely used thermal insulators in the building industry. Owing to their very low density, both conductive and radiative heat transfers are significant. However, only few studies have already been conducted in the modeling of heat transfer in this kind of medium. This is due to their complex porous structure characterized by a double-scale porosity which has always been ignored by the previous works. In this study, we present a model of one-dimensional steady state heat transfer in these foams based on a numerical resolution of the radiation-conduction coupling. The modeling of the conductive and radiative properties of the foams takes into account their structural characteristics such as foam density or cell diameter and permits us to study the evolution of their equivalent thermal conductivity with these characteristics. The theoretical results have been compared to equivalent thermal conductivity measurements made on several EPS foams using a flux-meter apparatus and show a good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.