A full-field, time-resolved interferometric method for the characterization of sparse, polydisperse spray systems is reported. The method makes use of the angular intensity oscillations in the wide-angle forward-scatter region. A pulsed laser is used to illuminate a planar sheet through the spray, which is imaged, out of focus, from the 45°direction. The image consists of a set of out-of-focus spots, each of which represents an individual droplet, and superimposed on which is a set of fringes corresponding to the angular intensity oscillations of that droplet. Macrophotographic recording with high-resolution digitization for image analysis provides a full-field capability. The spatial frequency of fringes on each spot in the image plane is dependent on the diameter of the corresponding droplet in the object plane, and a simple geometric analysis is shown to be appropriate for the calculation of the spatial frequency of fringes as a function of droplet size. Images are analyzed automatically by a software suite that uses Gaussian blur, Canny edge detection, and Hough transforms to locate individual droplets in the image field. Fringe spatial frequency is then determined by least-squares fitting to a Chirp function. The method is applicable to droplets with diameters in the range of several millimeters to several hundred millimeters and number densities of up to 10(3) to 10(4). The accuracy of the method for droplet-size determination has been evaluated by measurements of monodisperse aerosols of known droplet size, and measurements of droplet-size distribution in a polydisperse aerosol produced by a gasoline fuel injector are also presented. An extension of the method, using high-speed photography to measure two components of velocity in addition to size and position, is discussed. A two-wavelength approach may also offer the capability to measure the concentration of model fuel additives in droplets, and the results of a feasibility study are described.
This paper concerns the robustness of discrete wavelet transform (DWT) compression in terahertz pulsed imaging (TPI). TPI datasets consist of terahertz time-domain series which are sampled at each 'pixel' of the image, leading to file sizes which are typically of the order of several megabytes (MB) per image. This makes efficient compression highly desirable for both transmission and storage. However, since the data may be required for diagnostic purposes it is essential that no relevant information is lost or artefacts introduced. We show that for a nylon step wedge the estimates of refractive index and absorption coefficients are not significantly altered when the terahertz data are reconstructed from only 20% of DWT coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.