High-resolution 750 MHz 1H NMR spectra of control human blood plasma have been measured and assigned by the concerted use of a range of spin-echo, two-dimensional J-resolved, and homonuclear and heteronuclear (1H-13C) correlation methods. The increased spectral dispersion and sensitivity at 750 MHz enable the assignment of numerous 1H and 13C resonances from many molecular species that cannot be detected at lower frequencies. This work presents the most comprehensive assignment of the 1H NMR spectra of blood plasma yet achieved and includes the assignment of signals from 43 low M(r) metabolites, including many with complex or strongly coupled spin systems. New assignments are also provided from the 1H and 13C NMR signals from several important macromolecular species in whole blood plasma, i.e., very-low-density, low-density, and high-density lipoproteins, albumin, and alpha 1-acid glycoprotein. The temperature dependence of the one-dimensional and spin-echo 750 MHz 1H NMR spectra of plasma was investigated over the range 292-310 K. The 1H NMR signals from the fatty acyl side chains of the lipoproteins increased substantially with temperature (hence also molecular mobility), with a disproportionate increase from lipids in low-density lipoprotein. Two-dimensional 1H-13C heteronuclear multiple quantum coherence spectroscopy at 292 and 310 K allowed both the direct detection of cholesterol and choline species bound in high-density lipoprotein and the assignment of their signals and confirmed the assignment of most of the lipoprotein resonances.
The systemic biochemical effects of oral hydrazine administration (dosed at 75, 90, and 120 mg/kg) have been investigated in male Han Wistar rats using metabonomic analysis of (1)H NMR spectra of urine and plasma, conventional clinical chemistry, and liver histopathology. Plasma samples were collected both pre- and 24 h postdose, while urine was collected predose and daily over a 7 day postdose period. (1)H NMR spectra of the biofluids were analyzed visually and via pattern recognition using principal component analysis. The latter showed that there was a dose-dependent biochemical effect of hydrazine treatment on the levels of a range of low molecular weight compounds in urine and plasma, which was correlated with the severity of the hydrazine induced liver lesions. In plasma, increases in the levels of free glycine, alanine, isoleucine, valine, lysine, arginine, tyrosine, citrulline, 3-D-hydroxybutyrate, creatine, histidine, and threonine were observed. Urinary excretion of hippurate, citrate, succinate, 2-oxoglutarate, trimethylamine-N-oxide, fumarate and creatinine were decreased following hydrazine dosing, whereas taurine, creatine, threonine, N-methylnicotinic acid, tyrosine, beta-alanine, citrulline, Nalpha-acetylcitrulline and argininosuccinate excretion was increased. Moreover, the most notable effect was the appearance in urine and plasma of 2-aminoadipate, which has previously been shown to lead to neurological effects in rats. High urinary levels of 2-aminoadipate may explain the hitherto poorly understood neurological effects of hydrazine. Metabonomic analysis of high-resolution (1)H NMR spectra of biofluids has provided a means of monitoring the progression of toxicity and recovery, while also allowing the identification of novel biomarkers of development and regression of the lesion.
We present here the potential of an integrated metabonomic strategy to deconvolute the biofluid metabolic signatures in experimental animals following multiple organ toxicities, using the well-known hepato- and nephrotoxin, thioacetamide. Male Han-Wistar rats were dosed with thioacetamide (150 mg/kg, n = 25), and urine, plasma, liver, and kidney samples were collected postdose for conventional NMR and magic angle spinning (MAS) NMR spectroscopy. These data were correlated with histopathology and plasma clinical chemistry collected at all time points. 1H MAS NMR data from liver and kidney were related to sequential 1H NMR measurements in urine and plasma using pattern recognition methods. One-dimensional 1H NMR spectra were data-reduced and analyzed using principal components analysis (PCA) to show the time-dependent biochemical variations induced by thioacetamide toxicity. From the eigenvector loadings of the PCA, those regions of the 1H NMR spectra, and hence the combinations of endogenous metabolites marking the main phase of the toxic episode, were identified. The thioacetamide-induced biochemical manifestations included a renal and hepatic lipidosis accompanied by hypolipidaemia; increased urinary excretion of taurine and creatine concomitant with elevated creatine in liver, kidney, and plasma; a shift in energy metabolism characterized by depleted liver glucose and glycogen; reduced urinary excretion of tricarboxylic acid cycle intermediates and raised plasma ketone bodies; increased levels of tissue and plasma amino acids leading to amino aciduria verifying necrosis-enhanced protein degradation and renal dysfunction; and elevated hepatic and urinary bile acids indicating secondary damage to the biliary system. This integrated metabonomic approach has been able to identify the tissue of origin for biomarkers present in the metabolic profiles of biofluids, following the onset and progression of a multiorgan pathology, and as such highlights its potential in the evaluation of embedded toxicity in novel drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.