The thermogravimetry (TGA) in nitrogen was measured for poly(tetramethyl‐p‐silphenylene)‐siloxane (TMPS) fractions with narrow molecular weight distributions and for block copolymers of TMPS and dimethyl siloxane (DMS) with varying composition. The measurements were made with the Perkin‐Elmer DCS IB‐TGA attachment which consists of a Cahn electrobalance and a wire‐wound furnace with programmable temperature controls. The weight loss curves for heating rates of 10, 20, and 40°C/min were analyzed using the method of Flynn and Wall. The analysis indicates that thermal degradation proceeds primarily by scission of the siloxane bond with an activation energy of 44 ± 3 kcal/mole for the uncatalyzed reaction and 13 ± 2 kcal/mole for the reaction occurring in the presence of residual catalyst. The thermal stability of the TMPS–DMS copolymer is impaired through increasing the concentration of the DMS component. Cyclic DMS trimer and TMPS monomer and dimer were observed by mass spectrometry which gave results consistent with the proposed mechanism of degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.