We compared the effects of caffeinated vs non-caffeinated carbohydrate electrolyte (CE) drinks on urine volume (UV), free water clearance (CH2O), fractional excretion of water (FEH2O), and osmolar excretion during 4 h of rest or 1 h rest followed by 3 h of cycling at 60% VO2max in six subjects. We also tested maximal performance at 85% VO2max following the 3-h exercise trials. Throughout the two resting trials and the two rest + exercise trials, subjects ingested CE (total volume = 35 ml/kg) without (PLAC) or with (CAFF) caffeine (25 mg/dl). Blood samples were collected, and body weight and UV were recorded every hour. Urine and blood were analyzed for osmolality and creatinine, and plasma catecholamine concentrations were determined. At rest, mean (+/-SE) UV between 60 min and 240 min was greater for CAFF (1843 +/- 166 ml) vs PLAC (1411 +/- 181 ml) (p < 0.01); during exercise the difference in UV between CAFF (398 +/- 32 ml) and PLAC (490 +/- 57 ml) was not significant. Cycling performance was unaffected by caffeine. Plasma catecholamine concentrations were not different between PLAC and CAFF but were greater during exercise than rest (p < 0.01) and may have counteracted the diuretic effect of caffeine observed at rest. Thus, CAFF consumed in CE during moderate endurance exercise apparently does not compromise bodily hydration status.
This study investigated the hypothesis that addition of to a rehydration beverage would stimulate drinking and augment restoration of body water in individuals dehydrated during 90 min of continuous treadmill exercise in the heat. Following a 3.0 ± 0.2% decrease in body weight (BW), 6 subjects sat in a thermoneutral environment for 30 min to allow body fluid compartments to stabilize. Over the next 3 hr, subjects rehydrated ad libitum using either flavored/artificially sweetened water (H20-R) or a flavored, 6% sucrose drink containing either or 50 mmol/L NaCl. Results demonstrated that rapid removal of the osmotic stimulus, during 0-R, and the volume-dependent dipsogenic stimuli, during , are important factors in limiting fluid intake during rehydration, compared to . It was also found that the pattern of fluid replacement and restoration of fluid balance following dehydration is influenced by the dehydration protocol used to induce the loss in total body water and the sodium content of the rehydration beverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.