The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea.
Casein glycomacropeptide (CGMP), a glycoprotein originating during cheese manufacture, has shown promising effects by promoting the growth of some beneficial bacteria in vitro, although its activity has not been well explored. The present study was designed to evaluate the effects of CGMP against enterotoxigenic Escherichia coli (ETEC) K88 in vitro (Trial 1) and in vivo (Trial 2). In Trial 1, increasing concentrations of CGMP (0, 0·5, 1·5 or 2·5 mg/ml) were tested regarding its ability to block the attachment of ETEC K88 to ileal mucosa tissues obtained from piglets. Increasing the concentration of CGMP resulted in a gradual decrease in ETEC K88 attachment to the epithelial surface. In Trial 2, seventy-two piglets were distributed in a 2 £ 2 factorial combination including or omitting CGMP in the diet (control diet v. CGMP) and challenged or not with ETEC K88 (yes v. no). Inclusion of CGMP increased crude protein, ammonia and isoacid concentrations in colon digesta. CGMP also increased lactobacilli numbers in ileum and colon digesta, and reduced enterobacteria counts in mucosa scrapings and the percentage of villi with E. coli adherence measured by fluorescence in situ hybridisation. The inclusion of CGMP in the diets of challenged animals also prevented the increase of enterobacteria in ileal digesta. We can conclude that CGMP may improve gut health by diminishing the adhesion of ETEC K88 to the intestinal mucosa, by increasing the lactobacilli population in the intestine and by reducing the overgrowth of enterobacteria in the digestive tract of piglets after an ETEC K88 challenge.Key words: Bovine glycomacropeptide: Piglets: Microbiota: Intestinal health Adherence of bacteria to the intestinal epithelium is known to be a prerequisite step for the colonisation and infection of the gastrointestinal tract by many pathogens. Some strains of pathogenic Escherichia coli have developed mechanisms of adhesion to intestinal (1) or renal cells (2) . In particular, enterotoxigenic E. coli (ETEC) strains adhere to receptors on the intestinal epithelium by proteinaceous surface appendages called fimbriae (3) . ETEC expressing the K88 fimbrial antigen is the most common pathogroup in young pigs (1) , and glycoproteins, sialoglycoproteins or glycosphingolipids are considered the main receptors for different K88 (ab, ac or ad) fimbrial variants (4 -7) .The potential of certain compounds to inhibit the adherence of micro-organisms, specifically E. coli, to the intestinal epithelium has been studied in vitro by various authors. Schwertmann et al. (8) and Shahriar et al. (9) described the potential of different milk glycoproteins to bind the fimbriae of E. coli and to inhibit the F4ac-positive E. coli attachment to intestinal villi in vitro. Naughton et al. (10) also described different types of prebiotics (non-digestible oligosaccharides) capable of reducing the numbers of E. coli in jejunal organ cultures of pigs. Some reports suggest that milk contains glycoconjugates that have structural homology to the glycan moi...
SummaryHigh doses of Zn are widely used for prevention and treatment of diarrhoea in weaning piglets; however, the mechanism of action of Zn against diarrhoea is still not well understood. The objective of this study was to evaluate whether weaning induces Zn deficiency in piglets. Eight litters of primiparous sows were selected for the experiment, and 3 piglets presenting similar weights were selected within each litter. Two of the three selected piglets from each litter were weaned at 21d of age and fed two different diets: a commercial control diet (WCt) and the same diet plus 2000 ppm of Zn as ZnO (WZn). The third selected pig from each litter was kept unweaned (Uw) with the sow and the rest of the litter. All 24 selected animals were killed at 28 d of age, and blood, gastrointestinal content, liver, pancreas and spleen were sampled for Zn, Fe and Cu analysis (mg/kg or L of sample). Data were analysed using ANOVA including treatment as a fixed factor. Weaned pigs fed WCt diet presented a lower Zn concentration in plasma than Uw animals (0.76 AE 0.091 vs. 1.10 AE 0.099 mg/L, p = 0.05). Zinc levels in liver, pancreas and spleen were not affected by weaning. Total concentration of Zn was higher in gastrointestinal contents of weaned animals fed WCt diet than in Uw pigs (p 0.001 for stomach, jejunum, ileum, caecum and colon). Supplementation with high doses of ZnO increased levels of Zn in gastrointestinal content (p < 0.001), liver (p < 0.001) and pancreas (p < 0.001) compared to WCt diet. It also increased plasma Zn to non-deficient levels (1.32 AE 0.086), but the increase was not as marked as in other locations and final concentration was not different than that in Uw animals (p = 0.231). Weaning creates a Zn deficiency situation in weaned pigs as observed by plasma Zn concentrations. ZnO supplementation counteracts Zn deficiency.
A total of 672 male and female piglets (21 d postweaning; approximately 13 kg BW) were selected to be used in 3 different experiments to assess the influence of dietary electrolyte balance (dEB; Na + K - Cl, in mEq/kg of diet) on feed preference and growth performance. In Exp. 1, piglets were fed 4 isoenergetic diets differing in dEB level: 16, 133, 152, and 269 mEq/kg diets. Changes on dEB were obtained by changing the levels of sodium and chloride with calcium chloride, calcium carbonate, and sodium bicarbonate. Piglets fed the 16 and 133 mEq/kg diets achieved a greater ADG (P < 0.04), BW (P < 0.04), and apparent total-tract digestibility of CP and Zn (P < 0.05) than did piglets fed the 269 mEq/kg diet. The 16 mEq/kg level also reduced blood total CO (P < 0.01), bicarbonate (P < 0.01), and base excess (P < 0.02) concentrations compared with the rest of the dietary treatments. Three diets differing in dEB were designed for Exp. 2 and 3: -16, 151, and 388 mEq/kg diets. In Exp. 2, greater ADFI (P = 0.03), BW (P = 0.02), ADG (P < 0.001), and G:F (P < 0.01) were observed for piglets fed the -16 mEq/kg diet than those fed the 388 mEq/kg diet. Subsequently, their short-term preference for these diets was assessed by using a 2-d choice-test protocol (30 min). Piglets preferred (P < 0.001) the 388 mEq/kg diet to the -16 mEq/kg diet, independently of the dietary treatment they received before. Pigs also preferred (P < 0.001) the 151 mEq/kg diet when compared with the -16 mEq/kg diet. Experiment 3 assessed the long-term preference and short-term consumption of the -16 and 388 mEq/kg diets. Similar to Exp. 2, animals showed a greater (P < 0.001) intake of the 388 mEq/kg diet than they did of the -16 mEq/kg diet during both the preference (14 d) and 1-feeder (2 h) tests conducted. Results show that low rather than high dEB levels optimize growth performance of piglets. When they have the opportunity to choose, piglets are unable to select the diet that optimizes their performance, either in short- or in long-term preference tests, showing also a greater short-term consumption of high instead of low dEB levels.
An experiment was conducted to evaluate the influence of different Ca sources (limestone, Ca chloride, and Lipocal, a fat-encapsulated tricalcium phosphate, TCP) in conjunction with 4 dietary levels of non-phytate P (NPP) on performance, ileal digestibility of Ca and P, and bone mineralization in broiler chickens. Calcium sources were also evaluated in vitro to measure acid-binding capacity (ABC) and Ca solubility at different pH values. Ca chloride showed the highest solubility of Ca, with TCP showing the highest ABC. Ross male broiler-chicks were sorted by BW at 1 d post-hatch and assigned to 5 cages per diet with 5 birds per cage. Twelve diets were arranged in a 3×4 factorial of the 3 Ca sources and 4 levels of NPP (0.3%, 0.35%, 0.4% or 0.45%) consisting of 4 added P levels (Ca(H2PO4)2) with a high dose of phytase (1,150 U/kg) in all diets. On d 14 post-hatch, 3 birds were euthanized, and ileal digesta and the right tibia were collected to determine ileal Ca and P digestibility and bone mineralization, respectively. Feed intake (FI) and weight gain (WG) on d 14 was higher (P<0.01) with TCP and limestone than with Ca chloride. Added P increased the tibia weight and tibia ash content in chicks fed TCP up to 0.4% NPP and limestone up to 0.35% NPP. Calcium ileal digestibility was higher (P<0.01) with Ca chloride (73.7%) than with limestone (67.1%) or TCP (66.8%), which increased (P<0.05) with added levels of P from monocalcium phosphate. Phosphorus ileal digestibility was not affected by the Ca source and increased (P<0.001) with added levels of NPP. It can be concluded that starting broilers responded better to low-soluble Ca sources compared to high-soluble sources. A level of 0.35%-0.40% NPP with a high dose of phytase (1,150 U/kg) in diets including limestone or TCP is sufficient to guarantee performance and bone formation for broiler chickens from d 0 to d 14.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.