High speed Optical Coherence Tomography (OCT) has made it possible to rapidly capture densely sampled 3D volume data. One key application is the acquisition of high quality in vivo volumetric data sets of the human retina. Since the volume is acquired in a few seconds, eye movement during the scan process leads to distortion, which limits the accuracy of quantitative measurements using 3D OCT data. In this paper, we present a novel software based method to correct motion artifacts in OCT raster scans. Motion compensation is performed retrospectively using image registration algorithms on the OCT data sets themselves. Multiple, successively acquired volume scans with orthogonal fast scan directions are registered retrospectively in order to estimate and correct eye motion. Registration is performed by optimizing a large scale numerical problem as given by a global objective function using one dense displacement field for each input volume and special regularization based on the time structure of the acquisition process. After optimization, each volume is undistorted and a single merged volume is constructed that has superior signal quality compared to the input volumes. Experiments were performed using 3D OCT data from the macula and optic nerve head acquired with a high-speed ultra-high resolution 850 nm spectral OCT as well as wide field data acquired with a 1050 nm swept source OCT instrument. Evaluation of registration performance and result stability as well as visual inspection shows that the algorithm can correct for motion in all three dimensions and on a per A-scan basis. Corrected volumes do not show visible motion artifacts. In addition, merging multiple motion corrected and registered volumes leads to improved signal quality. These results demonstrate that motion correction and merging improves image quality and should also improve morphometric measurement accuracy from volumetric OCT data.
In preparation of the study of liquefied natural gas (LNG) sloshing in ships and vehicles, we model and numerically analyze compressible two-fluid flow. We consider a five-equation two-fluid flow model, assuming velocity and pressure continuity across two-fluid interfaces, with a separate equation to track the interfaces. The system of partial differential equations is hyperbolic and quasi-conservative. It is discretized in space with a tailor-made third-order accurate finite-volume method, employing an HLLC approximate Riemann solver. The third-order accuracy is obtained through spatial reconstruction with a limiter function, for which a novel formulation is presented. The non-homogeneous term is handled in a way consistent with the HLLC treatment of the convection operator. We study the one-dimensional case of a liquid column impacting onto a gas pocket entrapped at a solid wall. It mimics the impact of a breaking wave in an LNG containment system, where a gas pocket is entrapped at the tank wall below the wave crest. Furthermore, the impact of a shock wave on a gas bubble containing the heavy gas R22, immersed in air, is simulated in two dimensions and compared with experimental results. The numerical scheme is shown to be higher-order accurate in space and capable of capturing the important characteristics of compressible two-fluid flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.