The theory, configuration, and accuracy of an inexpensive probe to measure turbulence from a small airplane are presented. The probe employs a nine-hole pressure-sphere design along with inprobe high-frequency pressure, temperature, and acceleration sensors. This sensor suite is specifically designed to extend mass, momentum and energy eddy-flux measurement to the higher frequencies characteristic of marine and nocturnal boundary layers. The probe is part of a mobile flux system, independent of the conveyance, which does not require a separate Inertial Navigation System.The new nine-port pressure sphere turbulence probe allows accurate turbulent velocity measurement with proper probe installation and appropriate computation technique for dynamic pressure. A thermistor in the central pressure port provides simultaneous temperature measurement, at a location symmetrical with respect to the flow, for accurate determination of true airspeed and heat flux. The probemounted temperature sensor gives heat fluxes with variance 5% of the mean in a weakly-turbulent marine boundary layer.
Small environmental research aircraft (ERA) are becoming more common for detailed studies of airsurface interactions. The Sky Arrow 650 ERA, used by multiple groups, is designed to minimize the complexity of high-precision airborne turbulent wind measurement. Its relative wind probe, of a nine-port design, is furthermore used with several other airplanes. This paper gives an overview of 1) calibration of the model that converts the probe's raw measurements to meteorological quantities; 2) quality control and assurance (QC-QA) in postprocessing of these quantities to compute fluxes; and 3) sensitivity of fluxes to errors in calibration parameters. The model, an adapted version of standard models of potential flow and aerodynamic upwash, is calibrated using an integrated method to derive a globally optimum set of parameters from in-flight maneuvers. Methods of QC-QA from the tower flux community are adopted for use with airborne flux data to provide more objective selection criteria for large datasets. Last, measurements taken from a standard operational flight are used to show fluxes to be most sensitive to calibration parameters that directly affect the vertical wind component. In another test with the same data, varying all calibration parameters simultaneously by 610% of their optimum values, the model computes a response in the fluxes smaller than 10%, though a larger response may occur if only a subset of parameters is perturbed. A MATLAB toolbox has been developed that facilitates the procedures presented here.
Flow distortion is a universal consideration in the measurement of wind. Usually the distortion results from deflection of the flow by the support. Instruments mounted on airplanes, however, experience an additional deflection associated with lift, which changes rapidly and continuously during flight. In front of the airplane, this deflection appears as upwash. Characteristic upwash contamination ranges from 0.5 to 2.5 m s-', depending on wing loading, flight speed, and forward distance from the wing to the measurement location. On pressure-radome installations the distance from the wing is usually small and the potential for upwash contamination large. Sensors mounted at the end of long probes attached to smaller airplanes with light wing loading are less susceptible to upwash contamination. Since wing loading also depends on the local vertical wind velocity the upwash velocity is directly correlated with vertical wind velocity. Generally, empirical corrections are derived from flight tests. We develop a simple method from principles of aerodynamics which explains these corrections in terms of upwash. The applicability of our approach to moderate upwash is demonstrated with data collected from the NOAA Long-EZ research airplane. More severe upwash conditions require a more sophisticated correction beyond the scope of this paper, but basically derived from the same principles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.