Observations from a suite of platforms deployed in the coastal ocean are being combined with numerical models and simulations to investigate the processes that couple the atmosphere and ocean.
The theory, configuration, and accuracy of an inexpensive probe to measure turbulence from a small airplane are presented. The probe employs a nine-hole pressure-sphere design along with inprobe high-frequency pressure, temperature, and acceleration sensors. This sensor suite is specifically designed to extend mass, momentum and energy eddy-flux measurement to the higher frequencies characteristic of marine and nocturnal boundary layers. The probe is part of a mobile flux system, independent of the conveyance, which does not require a separate Inertial Navigation System.The new nine-port pressure sphere turbulence probe allows accurate turbulent velocity measurement with proper probe installation and appropriate computation technique for dynamic pressure. A thermistor in the central pressure port provides simultaneous temperature measurement, at a location symmetrical with respect to the flow, for accurate determination of true airspeed and heat flux. The probemounted temperature sensor gives heat fluxes with variance 5% of the mean in a weakly-turbulent marine boundary layer.
Abstract. Measurements of net ecosystem CO2 exchange (NEE) and energy balance were made using chamber-, tower-, and aircraft-based measurement techniques in Alaskan arctic tundra ecosystems during the 1994-1995 growing seasons (June-August). One of our objectives was to quantify the interrelationships between the NEE and the energy balance measurements made from different sampling techniques. Qualitative and quantitative intercomparisons revealed that on average the correspondence between the mass and energy fluxes measured by these sampling methods was good despite potential spatial and temporal mismatches in sampling scale. Quantitative comparisons using least squares linear regression analyses with the tower-based measurements of NEE as the independent variable indicate that the chamber-and aircraft-based NEE measurements were generally lower relative to the tower-based measurements (
Summary Net CO2 flux measurements conducted during the summer and winter of 1994–96 were scaled in space and time to provide estimates of net CO2 exchange during the 1995–96 (9 May 1995–8 May 1996) annual cycle for the Kuparuk River Basin, a 9200 km2 watershed located in NE Alaska. Net CO2 flux was measured using dynamic chambers and eddy covariance in moist‐acidic, nonacidic, wet‐sedge, and shrub tundra, which comprise 95% of the terrestrial landscape of the Kuparuk Basin. CO2 flux data were used as input to multivariate models that calculated instantaneous and daily rates of gross primary production (GPP) and whole‐ecosystem respiration (R) as a function of meteorology and ecosystem development. Net CO2 flux was scaled up to the Kuparuk Basin using a geographical information system (GIS) consisting of a vegetation map, digital terrain map, dynamic temperature and radiation fields, and the models of GPP and R. Basin‐wide estimates of net CO2 exchange for the summer growing season (9 May−5 September 1995) indicate that nonacidic tundra was a net sink of −31.7 ± 21.3 GgC (1 Gg = 109 g), while shrub tundra lost 32.5 ± 6.3 GgC to the atmosphere (negative values denote net ecosystem CO2 uptake). Acidic and wet sedge tundra were in balance, and when integrated for the entire Kuparuk River Basin (including aquatic surfaces), whole basin summer net CO2 exchange was estimated to be in balance (−0.9 ± 50.3 GgC). Autumn to winter (6 September 1995–8 May 1996) estimates of net CO2 flux indicate that acidic, nonacidic, and shrub tundra landforms were all large sources of CO2 to the atmosphere (75.5 ± 8.3, 96.4 ± 11.4, and 43.3 ± 4.7 GgC for acidic, nonacidic, and shrub tundra, respectively). CO2 loss from wet sedge surfaces was not substantially different from zero, but the large losses from the other terrestrial landforms resulted in a whole basin net CO2 loss of 217.2 ± 24.1 GgC during the 1995–96 cold season. When integrated for the 1995–96 annual cycle, acidic (66.4 + 25.25 GgC), nonacidic (64.7 ± 29.2 GgC), and shrub tundra (75.8 ± 8.4 GgC) were substantial net sources of CO2 to the atmosphere, while wet sedge tundra was in balance (0.4 + 0.8 GgC). The Kuparuk River Basin as a whole was estimated to be a net CO2 source of 218.1 ± 60.6 GgC over the 1995–96 annual cycle. Compared to direct measurements of regional net CO2 flux obtained from aircraft‐based eddy covariance, the scaling procedure provided realistic estimates of CO2 exchange during the summer growing season. Although winter estimates could not be assessed directly using aircraft measurements of net CO2 exchange, the estimates reported here are comparable to measured values reported in the literature. Thus, we have high confidence in the summer estimates of net CO2 exchange and reasonable confidence in the winter net CO2 flux estimates for terrestrial landforms of the Kuparuk river basin. Although there is larger uncertainty in the aquatic estimates, the small surface area of aquatic surfaces in the Kuparuk river basin (≈ 5%) presumably reduces the potential f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.