The Y1 receptor of neuropeptide Y (NPY) has been demonstrated in glial cells of astrocytic lineage in vitro. We have studied the immunohistochemical expression of Y1 receptors in the glia of the diseased human retina, in tissue samples obtained after surgery for proliferative vitreoretinopathy. In this condition, glia and other cell types migrate and form epi- or subretinal membranes. Both diseased retinas (n = 8) and PVR membranes (n = 43) contained numerous Y1-immunoreactive cells. In the diseased retina, the Y1 antiserum labeled cells with the morphological radial pattern characteristic of Müller cells, whereas in the membranes, label appeared in a large population of elongate cells, measuring up to 250 microm. In both retina and membranes, double labeling demonstrated that the vast majority of Y1-immunoreactive cells were also labeled by a glial fibrillary acidic protein (GFAP) antibody, indicating their glial origin. Retinal regions devoid of GFAP immunoreactivity also lacked the Y1 label. None of these markers was detected in Müller cells of normal retina. Y1 immunoreactivity did not co-localize with smooth muscle actin immunoreactivity, a marker of myofibroblasts. Expression of Y1 receptors would characterize reactive and proliferating glial cells of the diseased retina and could perhaps be involved in the proliferation of injured glial cells causing regrowth of PVR membranes and the consequent secondary retinal detachments.
Proliferative vitreoretinopathy (PVR) is characterized by severe glial remodeling. Glial activation and proliferation that occur in brain diseases are modulated by endothelin-1 (ET-1) and its receptor B (ETR-B). Because retinal astrocytes contain ET-1 and express ETR-B, we studied the changes of these molecules in an experimental mouse model of PVR and in human PVR. Both ET-1 and ETR-B immunoreactivities increased in mouse retina after induction of PVR with dispase. Epi-and subretinal outgrowths also displayed these immunoreactivities in both human and experimental PVR. Additionally, myofibroblasts and other membranous cell types showed both ET-1 and ETR-B immunoreactivities. In early stages of experimentally induced PVR, prepro-ET-1 and ETR-B mRNA levels increased in the retina. These mRNA levels also increased after retinal detachment (RD) produced by subretinal injection. Treatment of mice with tezosentan, an antagonist of endothelinergic receptors, reduced the histopathological hallmarks of dispase-induced PVR: retinal folding, epiretinal outgrowth, and gliosis. Our findings in human and in dispase-induced PVR support the involvement of endothelinergic pathways in retinal glial activation and the phenotypic transformations that underlie the growth of membranes in this pathology. Elucidating these pathways further will help to develop pharmacological treatments to prevent PVR. In addition, the presence of ET-1 and ETR-B in human fibrous membranes suggests that similar treatments could be helpful after PVR has been established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.