The Y1 receptor of neuropeptide Y (NPY) has been demonstrated in glial cells of astrocytic lineage in vitro. We have studied the immunohistochemical expression of Y1 receptors in the glia of the diseased human retina, in tissue samples obtained after surgery for proliferative vitreoretinopathy. In this condition, glia and other cell types migrate and form epi- or subretinal membranes. Both diseased retinas (n = 8) and PVR membranes (n = 43) contained numerous Y1-immunoreactive cells. In the diseased retina, the Y1 antiserum labeled cells with the morphological radial pattern characteristic of Müller cells, whereas in the membranes, label appeared in a large population of elongate cells, measuring up to 250 microm. In both retina and membranes, double labeling demonstrated that the vast majority of Y1-immunoreactive cells were also labeled by a glial fibrillary acidic protein (GFAP) antibody, indicating their glial origin. Retinal regions devoid of GFAP immunoreactivity also lacked the Y1 label. None of these markers was detected in Müller cells of normal retina. Y1 immunoreactivity did not co-localize with smooth muscle actin immunoreactivity, a marker of myofibroblasts. Expression of Y1 receptors would characterize reactive and proliferating glial cells of the diseased retina and could perhaps be involved in the proliferation of injured glial cells causing regrowth of PVR membranes and the consequent secondary retinal detachments.
ABSTRACT:We studied the innervation of the cat testis using a panel of antisera against the following neuronal markers: protein gene product 9.5 (PGP), neuropeptide Y, C-terminal peptide of neuropeptide Y, galanin, vasoactive intestinal peptide (VIP), calcitonin gene-related peptide, and substance P. Immunoreactivity against PGP, a general neuronal label, demonstrated the arrangement of fibers from the superior spermatic nerve (SSN) in the testicular pedicle and the cephalic testicular pole, and those of the inferior spermatic nerve (ISN) along the vas deferens and the inferior testicular ligament. The testicular parenchyma exhibited a very rich innervation, mainly distributed to blood vessels and Leydig cell nests, but also in close association with seminiferous tubules. Numerous peptidergic fibers were present in the SSN and ISN, albeit in different proportions. Thus, VIP-immunoreactive fibers were almost absent in the SSN, but were the most abundant subpopulation of the ISN. The testicular interstitium contained numerous peptidergic fibers, associated with blood vessels, interstitial Leydig cells, and seminiferous tubules. Similar fibers were related to the rete testis. Parenchymatous VIP-immunoreactive nerves disappeared after bilateral vasectomy. Stimulation of the ISN under experimental conditions was associated with an increase of blood flow, and induced a large release of VIP into the spermatic vein. The extensive and selective distribution of nerve fibers within the cat testicular parenchyma supports the importance of spermatic nerves for testicular function. Furthermore, the differences in the fiber composition of the SSN and ISN can be correlated with their opposing effects on testosterone secretion and testicular blood flow.
Vizcachas (Lagostomus maximus maximus, Chinchillidae) are nocturnal rodents living in burrows in many regions of Argentina, Bolivia, and Chile. We have studied the eye of the vizcacha using several light and electron microscopic procedures, with the purpose of understanding the role of vision in the behavior of this species. Our observations demonstrated an avascular, rod-rich retina, with a specialized region spanning through most of the equator of the eye. In this central band, all neural retinal layers exhibited a high cell density, whereas the photoreceptor layer was characterized by the presence of very long rods. In addition, the central region was associated with a distinct pigmentation pattern, including scarce granulation of the pigment epithelium, low pigmentation of the choroid, and the selective attachment of suprachoroidal cells to the inner scleral surface. These central modifications probably form the structural basis of a reflecting tapetum. The eye of the vizcacha received both long and short ciliary vessels, and a specialized cilio-sclero-choroidal vascular network appeared at the equatorial region. Our findings suggest that the equatorial region of the eye of the vizcacha could be a highly sensitive light detector related to foraging behaviors during crepuscular or nocturnal hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.