SUMMARY1. Isolated rat neural lobes were incubated in vitro and electrically stimulated to release vasopressin. The released vasopressin was assayed using a radioimmunoassay and there was a reasonably good correlation (r = 0-81) between results obtained with this assay and those obtained by bioassay with the rat blood pressure method.? 2. Regular stimulation at frequencies of 5, 10 and 20 Hz released progressively more vasopressin and the release could be blocked by addition of tetrodotoxin to the incubation medium.3. Stimulation with pulse patterns derived from tape recordings of phasically firing units in the supraoptic nucleus of dehydrated rats released more vasopressin than the same number of pulses regularly spaced in time. In the range 2-8 pulses/sec vasopressin release was related to the pulse frequency within the bursts (r = 0.90) and the number of short (< 100 msec) interpulse intervals (r = 0.92). Vasopressin released per pulse increased over the frequency range 3-6 pulses/sec, but above 6 pulses/sec vasopressin release per pulse tended to diminish.4. We conclude that phasic firing of vasopressin neurosecretory cells may enhance vasopressin release in vivo and that an important factor in determining release is the number of short interspike intervals.
Transgenic R6/2 mice carrying the Huntington's disease (HD) mutation show disrupted circadian rhythms that worsen as the disease progresses. By 15 weeks of age, their abnormal circadian behavior mirrors that seen in HD patients and is accompanied by dysregulated clock gene expression in the circadian pacemaker, the suprachiasmatic nucleus (SCN). We found, however, that the electrophysiological output of the SCN assayed in vitro was normal. Furthermore, the endogenous rhythm of circadian gene expression, monitored in vitro by luciferase imaging of organotypical SCN slices removed from mice with disintegrated behavioral rhythms, was also normal. We concluded that abnormal behavioral and molecular circadian rhythms observed in R6/2 mice in vivo arise from dysfunction of brain circuitry afferent to the SCN, rather than from a primary deficiency within the pacemaker itself. Because circadian sleep disruption is deleterious to cognitive function, and cognitive decline is pronounced in R6/2 mice, we tested whether circadian and cognitive disturbances could be reversed by using a sedative drug to impose a daily cycle of sleep in R6/2 mice. Daily treatment with Alprazolam reversed the dysregulated expression of Per2 and also Prok2, an output factor of the SCN that controls behavioral rhythms. It also markedly improved cognitive performance of R6/2 mice in a two-choice visual discrimination task. Together, our data show for the first time that treatments aimed at restoring circadian rhythms may not only slow the cognitive decline that is such a devastating feature of HD but may also improve other circadian gene-regulated functions that are impaired in this disease.
The Anatomical Society's core syllabus for anatomy (2003 and later refined in 2007) set out a series of learning outcomes that an individual medical student should achieve on graduation. The core syllabus, with 182 learning outcomes grouped in body regions, referenced in the General Medical Council's Teaching Tomorrow's Doctors, was open to criticism on the grounds that the learning outcomes were generated by a relatively small group of anatomists, albeit some of whom were clinically qualified. We have therefore used a modified Delphi technique to seek a wider consensus. A Delphi panel was constructed involving 'experts' (n = 39). The revised core syllabus of 156 learning outcomes presented here is applicable to all medical programmes and may be used by curriculum planners, teachers and students alike in addressing the perennial question: 'What do I need to know ?'
Magnocellular neurons of the hypothalamic supraoptic nucleus have been shown to express the immediate-early gene c-fos in a number of experimental and physiological circumstances. In each case the induction of the immediate-early gene followed the increase in the spike activity of the cells. Since an increase in the intracellular concentration of calcium following influx through voltage-sensitive calcium channels is a known stimulus for c-fos expression and since the action potentials of these neurons have a large calcium component, we hypothesized that c-fos induction in these neurons could be attributed to calcium influx during spike activity. In the present experiments we use extracellular recording and immunocytochemistry for Fos, the protein product of c-fos, to demonstrate the activation of the cells following intracerebroventricular administration of the muscarinic agonist, carbachol. Fos expression following carbachol injection was then compared with that induced by a similar number of antidromically evoked action potentials. Antidromic activation, unlike the activation induced by carbachol, did not lead to the induction of Fos. We conclude that Fos induction in these neurons requires receptor activation rather than spike activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.