Chemical data are presented for water from 22 lakes in small upland catchments (<20 ha) between Inuvik and Richards Island, Northwest Territories, Canada. Eleven of the basins appear pristine and 11 are affected by thermokarst slumping. The mean dissolved organic carbon (DOC) concentration of the pristine lakes (16.3 mg/l) is greater than the mean concentration of lakes disturbed by thermokarst slumping (10.5 mg/l). In pristine lakes, mean concentrations of Ca, Mg and SO 4 are 9.6, 3.6 and 11.1 mg/l, but in lakes affected by thermokarst, mean concentrations are 72.6, 26.8 and 208.2 mg/l, respectively. Soluble materials released from degrading permafrost are transported to lakes by surface runoff, elevating concentrations in lake water. The percentage of total basin area influenced by thermokarst is positively associated with ionic concentrations in lake water and inversely related to DOC. Thermokarst occupying as little as 2% of catchment area may modify the chemistry of lake water, and water quality may remain affected for several decades after slump development has ceased. Aerial photographs indicate that 5 to 15% of all lakes and ponds in four 49 km 2 areas between Inuvik and Richards Island are small (median size <2 ha) with catchments affected by thermokarst.
Beach profile surveys, offshore wave climate and variations in atmospheric conditions have been utilized to assess a short-term beach rotation phenomenon in a headland embayment Tenby, West Wales. Beach rotation, expressed by subaerial volumetric change, was shown by a negative phase relationship between beach extremities (r ¼ -0.67), while cross-correlation at a one-month timelag increased statistical significance (r ¼ 0.84). Due to beach aspect, gale wave heights decreased as wave direction rotated to the south (R 2 ¼ 0.4) and west (R 2 ¼ 0.65), while offshore wave direction influenced change at the southern and northern extremities (R 2 ¼ 0.52 and 0.34, respectively). Shelter from offshore islands and Giltar Headland contributes via wave diffraction to accretive, erosive and rotational patterns, and these are sensitive to variations around the predominant wave direction (229 ). A southerly shift induces north/south sediment movement, as waves diffract around the offshore islands, while a westerly change results in south/north sediment movement (i.e. beach rotation), as diffracted wave domination transfers to the headland. A general gale wave height reduction occurred when the North Atlantic Oscillation (NAO) was weak or in a transitional phase between positive or negative phases (R 2 ¼ 0.69 and R 2 ¼ 0.72, respectively). Morphological change was also attuned to atmospheric variation where a reversal in beach rotation was influenced by variations in positive and negative NAO/volume correlations and longshore profile location (R 2 ¼ 0.54 and 0.69, respectively). The results of this study have wider implications for coastal management; it is suggested that models developed in similar systems elsewhere will form the basis of human intervention or no active intervention strategies.
Using geographic information system (GIS) and field measurements the nearshore morphological variability of a headland bay beach at Tenby, West Wales (51·66 N; -4·71 W) was assessed over historical timeframes . Three areas chosen for detailed analysis were the area between mean low water (MLW) and lowest astronomical tide (LAT) contours; LAT and one fathom contours; and one and two fathom contours. Estuary closure c. 1855 has been suggested as the genesis for long-term beach evolution and did have an initial effect, with northward dune migration and reduced flushing effects. However, this research suggests nearshore bank migration and retrogradation associated with spit collapse took place prior to closure and continued throughout the assessed timeframe. Historical data revealed patterns of shoreward migration demonstrated by changes in orientation, Giltar headland acting as a pivot. Variations in sandbank position correlated with areal reduction of both Giltar spit and White Bank. Temporal offshore areal loss was contrasted against variable gains inshore as offshore banks welded to the beachface. Annual volumetric change analyses represented by profiles that extend 1 km offshore, confirmed Giltar spit and White Bank erosion rates of 91 m 3 yr -1 and 458 m 3 yr -1 respectively, and 220 m 3 yr -1 beachface accretion. Diminution of sediment supply observed over historical timescales was supported by decadal evidence. Here, profile analysis revealed a trend of decreasing volumes both updrift and within the study area, and increasing downdrift volumes. This explained why proximal detachment and sediment redistribution had occurred. Distinct reversal's in shoreline trend (rotation) corresponded to nearshore change; therefore, variations in seabed configuration triggered shoreface dynamic change over century timescales. Five-year cumulative average changes in North Atlantic Oscillation were further correlated to this reversal. As comparable scenarios are likely to exist at other worldwide coastal locations, similar analyses should be incorporated into shoreline monitoring programmes. Consequently, these assessments would inform shoreline trends and support coastal management decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.